
Database Toolbox
For Use with MATLAB®

Computation

Visualization

Programming

User’s Guide
Version 3

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Database Toolbox
© COPYRIGHT 1998 — 2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
May 1998 Online Only New for Version 1 for MATLAB 5.2
July 1998 First Printing For Version 1
Online only June 1999 Updated for Version 2 (Release 11)
December 1999 Second printing For Version 2 (Release 11)
Online only September 2000 Updated for Version 2.1 (Release 12)
June 2001 Third printing Updated for Version 2.2 (Release 12.1)
July 2002 Online only Updated for Version 2.2.1 (Release 13)
November 2002 Fourth printing Version 2.2.1
June 2004 Fifth printing Updated for Version 3.0 (Release 14)
October 2004 Online only Updated for Version 3.1 (Release 14SP1)
March 2005 Online only Updated for Version 3.0.2 (Release 14SP2)
September 2005 Online only Updated for Version 3.1 (Release 14SP3)
March 2006 Online only Updated for Version 3.1.1 (Release 2006a)

Contents

Getting Started

1
What Is the Database Toolbox? . 1-2

How the Database Toolbox Works with Databases 1-2
Features of the Database Toolbox . 1-3
Expected Background for Users . 1-4
Using the Visual Query Builder Versus Functions 1-5

System Requirements . 1-6
Platforms . 1-6
MATLAB and Related Products . 1-6
Databases . 1-7
Drivers . 1-8
Structured Query Language (SQL) 1-9
Data Types . 1-10

Setting Up a Data Source . 1-12
Setting Up a Data Source for ODBC Drivers 1-12
Setting Up a Data Source for JDBC Drivers 1-19

Starting the Database Toolbox . 1-29
Online Help . 1-29

Visual Query Builder

2
Getting Started with the Visual Query Builder GUI . . . 2-3

Before You Start . 2-3
Starting the Visual Query Builder . 2-4
Steps for Retrieving Data with the VQB 2-4
Steps for Exporting Data with the VQB 2-6
Help and Demos for the Visual Query Builder 2-7
Quitting the Visual Query Builder . 2-7

v

Creating and Running a Query to Import Data 2-8
Before You Start . 2-8
Building and Executing a Query . 2-8

Saving, Editing, and Clearing Variables for Queries . . 2-13
Saving a Query . 2-13
Editing a Query . 2-14
Clearing Variables in the Data Area 2-14

Specifying Preferences for NULLS, Data Format, and
Error Handling . 2-15
Saving Preferences . 2-18

Viewing Query Results . 2-19
Relational Display of Data . 2-19
Chart Display of Results . 2-23
Report Display of Results in a Table 2-26
Customized Display of Results in the Report Generator . . 2-28

Fine-Tuning Queries Using Advanced Query
Options . 2-32
Retrieving Unique Occurrences . 2-32
Retrieving Information That Meets Specified Criteria 2-34
Evaluating Multiple Constraints . 2-37
Presenting Results in Specified Order 2-42
Creating Subqueries for Values from Multiple Tables 2-45
Creating Queries for Results from Multiple Tables 2-50
Other Features in Advanced Query Options 2-54

Retrieving BINARY and OTHER Java Data 2-55
Retrieving Images in Data . 2-55

Exporting Data Using the VQB . 2-57
Limitations . 2-57
Before You Start . 2-57
To Start . 2-57

BOOLEAN (MATLAB logical) Data 2-62
Importing BOOLEAN Data . 2-62
Exporting BOOLEAN Data . 2-65

vi Contents

Generating M-Files from VQB Queries 2-66

Using Functions in the Database Toolbox

3
Importing Data into MATLAB from a Database 3-3

Viewing Information About the Imported Data 3-9

Exporting Data from MATLAB to a New Record in a
Database . 3-12

Replacing Existing Data in a Database from
MATLAB . 3-17

Exporting Multiple New Records from MATLAB 3-19

Retrieving BINARY or OTHER Java SQL Data Types . . 3-24

Accessing Metadata . 3-26
Resultset Metadata Object . 3-32

Performing Driver Functions . 3-33

About Objects and Methods for the Database
Toolbox . 3-36

Working with Cell Arrays in MATLAB 3-39
Viewing Cell Array Data Returned from a Query 3-39
Viewing Elements of Cell Array Data 3-42
Performing Functions on Cell Array Data 3-44
Creating Cell Arrays for Exporting Data from MATLAB . . 3-44

vii

Functions — By Category

4
General . 4-2

Database Connection . 4-2

SQL Cursor . 4-3

Importing Data into MATLAB from a Database 4-3

Database Metadata Object . 4-4

Exporting Data from MATLAB to a Database 4-5

Driver Object . 4-5

Drivermanager Object . 4-6

Resultset Object . 4-6

Resultset Metadata Object . 4-6

Visual Query Builder . 4-7

Functions — Alphabetical List

5

Examples

A
Setting Up a Data Source . A-2

viii Contents

Visual Query Builder GUI: Importing Data A-2

Visual Query Builder GUI: Displaying Results A-2

Visual Query Builder GUI: Exporting Data A-2

Using Database Toolbox Functions A-3

Index

ix

x Contents

1

Getting Started

What Is the Database Toolbox?
(p. 1-2)

Overview of how databases connect
to MATLAB®, toolbox functions, the
Visual Query Builder, major features
of the toolbox, and the expected
background for users of this product.

System Requirements (p. 1-6) Supported platforms, MATLAB
versions, databases, drivers, SQL
commands, data types, and related
products.

Setting Up a Data Source (p. 1-12) Before connecting to a database, set
up the data source for ODBC drivers
or for JDBC drivers.

Starting the Database Toolbox
(p. 1-29)

Start using functions or the Visual
Query Builder GUI, and learn how
to get help for the product.

1 Getting Started

What Is the Database Toolbox?
The Database Toolbox is one of an extensive collection of toolboxes for use with
MATLAB®. The Database Toolbox enables you to move data (both importing
and exporting) between MATLAB and popular relational databases.

With the Database Toolbox, you can bring data from an existing database into
MATLAB, use any of the MATLAB computational and analytic tools, and
store the results back in the database or in another database. You read from
the database, importing the data into the MATLAB workspace.

For example, a financial analyst working on a mutual fund could import a
company’s financial data into MATLAB, run selected analyses, and store the
results for future tracking. The analyst could then export the saved results to
a database.

This section covers the following topics:

• “How the Database Toolbox Works with Databases” on page 1-2

• “Features of the Database Toolbox” on page 1-3

• “Expected Background for Users” on page 1-4

• “Using the Visual Query Builder Versus Functions” on page 1-5

How the Database Toolbox Works with Databases
The Database Toolbox connects MATLAB to a database using MATLAB
functions. You retrieve data from the database and store it in the MATLAB
workspace. At that point, you use the extensive set of MATLAB tools to work
with the data. You can include Database Toolbox functions in MATLAB M
files. To export the data from MATLAB to a database, you use Database
Toolbox functions.

The Visual Query Builder (VQB), which comes with the Database Toolbox,
is an easy-to-use graphical user interface (GUI) for exchanging data with
your database. You can use the VQB instead of or in addition to using
Database Toolbox functions. With the VQB, you retrieve data by selecting
information from lists to build queries. The VQB imports the data into the
MATLAB workspace so you then can process the data using the MATLAB
suite of functions. With the VQB, you can display the retrieved information in

1-2

What Is the Database Toolbox?

relational tables, reports, and charts. You can also use the VQB to export data
from MATLAB and insert it into new rows in a database.

Features of the Database Toolbox
The Database Toolbox has the following features:

• Different databases can be used in a single session — Import data from one
database, perform calculations, and export the modified or unmodified data
to another database. Multiple databases can be open during a session.

• Data types are automatically preserved in MATLAB — No data massaging
or manipulation is required. The data is stored in MATLAB as cell arrays
or structures, which support mixed data types, or as numeric matrices, per
your specification. Export numeric, cell array, or structure data.

• Retrieval of large data sets or partial data sets — Import large data sets
from a database in a single fetch or in discrete amounts using multiple
fetches.

• Retrieval of BINARY or OTHER JDBC data types — You can import and
export Java objects such as bitmap images.

• Retrieval of database metadata — You do not need to know table names,
field names, and properties of the database structure to access the
database, but can retrieve that information using Database Toolbox
metadata functions.

• Dynamic importing of data from within MATLAB — Modify your SQL
queries in MATLAB statements to retrieve the data you need.

• Single environment for faster data analysis — Access both database data
and MATLAB functions at the MATLAB command prompt.

• Multiple cursors supported for a single database connection — Once you
establish a connection with a database, the connection can support the use
of multiple cursors. You can execute several queries on the same connection.

• Export query results using the Report Generator — If the Report Generator
product is installed locally, you can create custom reports from the Visual
Query Builder.

1-3

1 Getting Started

• Database connections remain open until explicitly closed — Once you
establish the connection to a database, it remains open during the entire
MATLAB session until you explicitly close it. This improves database access
and reduces the number of functions necessary to import and export data.

• Visual Query Builder — Exchange information with databases via this
easy-to-use graphical interface (GUI), even if you are unfamiliar with SQL.

Note Perform database administrative tasks, such as creating tables, using
your database system application. The Database Toolbox is not intended to be
used as a tool for database administration.

Expected Background for Users

MATLAB
This documentation assumes you have a basic working understanding of
MATLAB. You need to know about working with cell arrays and structures.

Database Connection
To connect to a database with the Database Toolbox, you will need to know
where your data source and database driver are located. If you do not have
that information, consult your database administrator when you perform the
instructions for setting up a data source.

SQL
It is not required that you be familiar with Structured Query Language (SQL)
to use the Database Toolbox. If you are not familiar with SQL and database
applications, use the Visual Query Builder (VQB) tool.

If you are familiar with SQL and the database applications you use, you can
use the VQB and Database Toolbox functions.

You should be familiar with SQL to perform complex queries and database
operations.

1-4

What Is the Database Toolbox?

Using the Visual Query Builder Versus Functions
These guidelines describe the main differences between the Visual Query
Builder and the Database Toolbox functions.

When to Use the Visual Query Builder
Use the Visual Query Builder to

• Retrieve data from relational databases for use in MATLAB when you are
not familiar with the Structured Query Language (SQL).

• Insert data from MATLAB into new records in a database when you are
not familiar with SQL.

• Easily build SQL queries and exchange data between databases and
MATLAB using a GUI.

• View the SQL statement for queries you generate with the VQB, and
directly edit the statements.

• Automatically generate a MATLAB M file that consists of Database Toolbox
functions to perform the query you built using the VQB.

When to Use Database Toolbox Functions
You can use the Database Toolbox functions to do everything the VQB does
and more. Database Toolbox functions offer these additional features:

• Replace data in databases from MATLAB.

• Write MATLAB M files and applications that access databases.

• Use the fastinsert function to export binary data or other data types that
you can import but cannot export with the VQB.

• Export data more quickly using the fastinsert function.

• Perform other functions not available with the Visual Query Builder, for
example, accessing database metadata.

1-5

1 Getting Started

System Requirements
The Database Toolbox works with the systems and applications described
here:

• “Platforms” on page 1-6

• “MATLAB and Related Products” on page 1-6

• “Databases” on page 1-7

• “Drivers” on page 1-8

• “Structured Query Language (SQL)” on page 1-9

• “Data Types” on page 1-10

Platforms
The Database Toolbox runs on all of the platforms that support MATLAB, but
you cannot run MATLAB with the -nojvm startup option.

MATLAB and Related Products
The Database Toolbox requires MATLAB. To use the Visual Query Builder
feature for creating customized reports in the Report Generator, you need the
MathWorks Report Generator product. Without that product you can use the
VQB’s similar Display > Report.

The MathWorks provides several products that are especially relevant
to the kinds of tasks you can perform with the Database Toolbox. See
more information about these products on the MathWorks Web site, at
http://www.mathworks.com/products/database/related.jsp.

1-6

http://www.mathworks.com/products/database/related.jsp

System Requirements

Databases
Your system must have access to an installed database. The Database Toolbox
supports the import and export of data from any ODBC/JDBC-compliant
database management system, including the following:

• IBM DB2

• Informix

• Ingres

• Microsoft Access

• Microsoft Excel

• Microsoft SQL Server

• MySQL

• Oracle

• PostgreSQL

• Sybase SQL Server

• Sybase SQL Anywhere

RDBMS for VAX/VMS systems is not supported.

If you are upgrading from an earlier version of a database, such as Microsoft
SQL Server 2000, to a newer version, there is nothing special you need to do
for the Database Toolbox. Just configure the data sources for the new version
of the database application as you did for the original version.

Data Retrieval Restrictions

Spaces in Table and Column Names. Microsoft Access supports the use of
spaces in table and column names, but most other databases do not. When
using functions to retrieve data from tables and fields whose names contain
spaces, use delimiters around the table and field names to build the query.
For Access, enclose the table or field name in quotation marks, for example
"order id". Other databases use different delimiters, for example brackets,
[], instead of quotation marks. In the Visual Query Builder, table and field
names that include spaces appear in quotation marks.

1-7

1 Getting Started

Quotation Marks in Table and Column Names. Do not include quotation
marks in table and column names. The Database Toolbox does not support
data retrieval from table and column names that contain quotation marks.

Reserved Words in Column Names. Be sure not to name columns using
the database’s reserved words, such as DATE in Microsoft Access, or you will
not be able to import or export the data using the Database Toolbox. You
will get an error message in the MATLAB Command Window, for example,
reporting a syntax error from Microsoft Access.

Drivers
For Windows platforms, the Database Toolbox supports Open Database
Connectivity (ODBC) drivers as well as Java Database Connectivity (JDBC)
drivers.

For UNIX platforms, the Database Toolbox supports Java Database
Connectivity (JDBC) drivers.

The driver for your database must be installed in order to use the
Database Toolbox. Most users (or their database administrators) install
the driver when they install the database. Consult your database
documentation or your database administrator if you need instructions
to install a database driver. If your database does not ship with
JDBC drivers, you can download drivers from the Sun JDBC Web site,
http://industry.java.sun.com/products/jdbc/drivers.

About Drivers for the Database Toolbox
An ODBC driver is a standard Windows interface that enables communication
between database management systems and SQL-based applications. A
JDBC driver is a standard interface that enables communication between
Java-based applications and database management systems.

The Database Toolbox is a Java-based application. To connect the Database
Toolbox to a database’s ODBC driver, the toolbox uses a JDBC/ODBC bridge,
which is supplied and automatically installed as part of the MATLAB JVM.

1-8

http://industry.java.sun.com/products/jdbc/drivers

System Requirements

The following illustrates the use of drivers with the Database Toolbox.

If your Windows-based database supports both ODBC and JDBC drivers,
the JDBC drivers might provide better performance when you access the
database because the ODBC/JDBC bridge is not used.

Structured Query Language (SQL)
The Database Toolbox supports American National Standards Institute
(ANSI) standard SQL commands.

1-9

1 Getting Started

Data Types
You can import the following data types into MATLAB and export them back
to your database:

• BOOLEAN

• CHAR

• DATE

• DECIMAL

• DOUBLE

• FLOAT

• INTEGER

• LONGCHAR (This is called the Memo data type in Microsoft Access.)

• NUMERIC

• REAL

• SMALLINT

• TIME

• TIMESTAMP

• TINYINT

• VARCHAR

If you try to export MATLAB data types not on this list, you see a syntax
error from the database.

Using the fastinsert function (instead of the insert function or the VQB
insert feature), you can export any type of data that you can import with
the Database Toolbox.

BINARY and OTHER Java SQL Data Types
You can import BINARY (referred to as BLOB for Binary Large Objects)
and OTHER JDBC objects. To use these data types in MATLAB, you need to
understand the content, and you might need to adjust it, such as stripping off

1-10

System Requirements

headers created by the ODBC/JDBC drivers so a specific binary format can be
used in MATLAB. You can export binary data using fastinsert.

For an example using the Visual Query Builder, see “Retrieving BINARY
and OTHER Java Data” on page 2-55. For an example using functions, see
“Retrieving BINARY or OTHER Java SQL Data Types” on page 3-24. In some
cases, retrieving OTHER data types does not result in any data.

1-11

1 Getting Started

Setting Up a Data Source
Before you can connect from the Database Toolbox to a database, you need
to set up a data source. A data source consists of data that you want the
toolbox to access, and information about how to find the data, such as driver,
directory, server, or network names.

Instructions for setting up a data source depend on the type of database
driver, ODBC or JDBC:

• ODBC — For MATLAB Windows platforms only, whose database resides on
a PC or on another system to which the PC is networked via ODBC drivers.
See “Setting Up a Data Source for ODBC Drivers” on page 1-12.

• JDBC — For MATLAB platforms that connect to a database via a JDBC
driver. See “Setting Up a Data Source for JDBC Drivers” on page 1-19.

For background information, see “Drivers” on page 1-8.

Setting Up a Data Source for ODBC Drivers
This procedure is to set up a data source for a PC running Windows whose
database resides on that PC or on another system to which the PC is
networked via an ODBC driver.

• Prepare examples: The examples in this documentation are based on
Microsoft Access. If you have Microsoft Access installed and want to follow
along with the examples, first get the databases and prepare them — see
“Prepare to Use Examples” on page 1-13.

• Define the data source: To define the data source after preparing to use
the examples, or to define any ODBC data source, see “Define an ODBC
Data Source” on page 1-15.

1-12

Setting Up a Data Source

Prepare to Use Examples
Prepare to use the following data sources so that you can follow the examples
in this documentation:

• “dbtoolboxdemo Data Source” on page 1-13

• “SampleDB Data Source” on page 1-13

dbtoolboxdemo Data Source. The dbtoolboxdemo data source
uses the tutorial database provided with the Database Toolbox,
matlabroot/toolbox/database/dbdemos/tutorial.mdb. The matlabroot
directory is where MATLAB is installed on your system, as determined by
running the matlabroot function in the Command Window. Before you can
define this data source, perform the following actions:

1 Using operating system features or the MATLAB copyfile function, copy
tutorial.mdb to a different directory for which you have write access, and
rename it to tutorial_copy.mdb.

2 Using operating system features or the MATLAB fileattrib function,
ensure you have write access to tutorial_copy.mdb.

3 Open tutorial_copy.mdb in Access. From within the MATLAB Current
Directory browser, you can do this by selecting the file and selecting Open
Outside MATLAB from the context menu. You might have to convert the
database to your version of Access. Save the database as tutorial.mdb.

SampleDB Data Source. The SampleDB data source uses the Microsoft
Access sample database called Nwind.

1 If you do not already have the Nwind database on your system, you can
download it from the Microsoft Web site downloads page. The version
referred to in this documentation is part of the Access 2000 downloads
and is the Northwind Traders sample database, Nwind.exe. Run the file
to create the Nwind.mdb database.

2 Using operating system features or the MATLAB fileattrib function,
ensure you have write access to Nwind.mdb.

3 Rename the file to Nwind_orig.mdb.

1-13

1 Getting Started

4 Open Nwind_orig.mdb in Access. From within the MATLAB Current
Directory browser, you can do this by selecting the file and selecting Open
Outside MATLAB from the context menu. You might have to convert the
database to your version of Access. Save the database as Nwind.mdb.

5 Using Access, create a table into which you will export MATLAB results:

a Open the Nwind database in Microsoft Access.

b Create a new table that has two columns, Calc_Date and Avg_Cost.

c For the Calc_Date field, use the default Data Type, which is Text, and
for the Avg_Cost field, set the Data Type to Number.

d Save the table as Avg_Freight_Cost and close it. Access warns you that
there is no primary key, but you do not need one. If you do designate
a primary key, you can run the example as written only once because
Access prevents you from inserting the same record twice.

If you need more information about how to create a table in Access, see
Microsoft Access help.

1-14

Setting Up a Data Source

Define an ODBC Data Source
These instructions for defining the ODBC data source use as an example the
Microsoft ODBC driver Version 4.00 and the U.S. English version of Microsoft
Access 2000 for Windows. If you have a different configuration, you may have
to modify the instructions.

It also uses specific databases as examples. To follow along with the examples,
be sure you have completed the instructions in “Prepare to Use Examples”
on page 1-13.

1 Close the database in the database program. For the examples, if Microsoft
Access is open, be sure to close the databases tutorial.mdb and Nwind.mdb.

2 Access the Windows Data Source Administrator dialog box in either of
these ways:

• From MATLAB, start the Visual Query Builder by running
querybuilder. Then from the VQB, select File > Query > Define
ODBC data source.

• From the Windows Start menu, select Settings > Control
Panel > Administrative Tools > Data Sources (ODBC).

The ODBC Data Source Administrator dialog box appears, listing any
existing data sources.

1-15

1 Getting Started

3 Select the User DSN tab.A list of existing user data sources appears.

4 Click Add in the ODBC Data Source Administrator dialog box. A list of
installed ODBC drivers appears in the Create New Data Source dialog box.

5 Select the ODBC driver that the data source you are creating will use and
click Finish.

• For the examples in this book, select Microsoft Access Driver
(*.mdb).

• Otherwise, select the driver for your database.

1-16

Setting Up a Data Source

The ODBC Setup dialog box appears for the driver you selected. Note that
the dialog box for your driver might be different from the following.

6 Provide a Data Source Name and Description.

• For the first sample data source, type dbtoolboxdemo as the Data
Source Name in order to follow along with the examples in this
documentation. For the Description, enter tutorial database.

• For some databases, the ODBC Setup dialog box requires you to provide
additional information.

7 Select the database that this data source will use. Note that for some
drivers, you skip this step.

a In the ODBC Setup dialog box, click Select.

The Select Database dialog box appears.

1-17

1 Getting Started

b Find and select the database you want to use. For the dbtoolboxdemo
data source, select tutorial.mdb as shown in the preceding illustration.
You specified its location as part of “Prepare to Use Examples” on page
1-13.

If your database resides on another system to which your PC is
connected, you must first click Network in the Select Database dialog
box. The Map Network Drive dialog box appears. Find and select the
directory containing the database you want to use, and then click Finish.

c Click OK to close the Select Database dialog box.

8 In the ODBC Setup dialog box, click OK.

9 Repeat steps 4 through 8 to define the data source for the other example
database, Nwind.

• In step 6, type SampleDB as the Data Source Name, and Northwind
database as the Description.

• In step 7, select Nwind.mdb. For more information, see “SampleDB Data
Source” on page 1-13.

10 Click OK to close the ODBC Data Source Administrator dialog box, which
now contains the dbtoolboxdemo and SampleDB data sources. If the VQB is
open, close it to see the data sources you just added.

View All Data Sources. Use getdatasources to view the names of all
valid ODBC and JDBC data sources.

1-18

Setting Up a Data Source

Setting Up a Data Source for JDBC Drivers
To set up a data source using JDBC drivers, you include a reference in a
MATLAB Java classpath file that specifies the location of the JDBC drivers
file. To use the VQB with JDBC drivers, you must then define the data source.
These steps provide the instructions:

1 “Find Your JDBC Drivers Filename” on page 1-19.

2 “Include the Reference in the MATLAB Java Classpath” on page 1-20.

3 “Define a JDBC Data Source in the Visual Query Builder” on page 1-22 to
use the Visual Query Builder with JDBC drivers.

If you are using Database Toolbox functions, you define the data source as
part of the database function to establish the connection.

Find Your JDBC Drivers Filename
The filename that contains the JDBC drivers is different for each database
system. The file is available from your database provider. Consult your
database administrator if you do not know where the file is located.

Following are some examples of filenames for a few databases. Because The
MathWorks does not provide these files, this information might not be correct
if the database provider has changed the filenames:

Database Filename Containing JDBC Drivers

Microsoft SQL Server msbase.jar, or mssqlserver.jar, or
msutil.jar

MySQL mysql-connector-java-n.n

Oracle classes111.zip

For some databases, you first need to unpack the compressed file containing
the JDBC drivers before you can point to it in the MATLAB Java classpath
file. For example, if you add a ZIP file and cannot establish a connection, try
unzipping the ZIP file and adding the unzipped file instead. You can use
the MATLAB unzip function.

1-19

1 Getting Started

For some examples of JDBC driver names contained in a drivers file, see
the database reference page.

Include the Reference in the MATLAB Java Classpath
After identifying the JDBC drivers filename as described in “Find Your JDBC
Drivers Filename” on page 1-19, you must specify its location in the MATLAB
Java classpath. The MATLAB Java classpath consists of two segments: a
static segment stored in classpath.txt, and a dynamic segment. You can
include the reference to the JDBC drivers file in either the static segment or
the dynamic segment of the MATLAB Java classpath:

• Static — See “Update and Save (Static) classpath.txt” on page 1-20

• Dynamic — See “Dynamically Update the MATLAB Java Classpath” on
page 1-21

Update and Save (Static) classpath.txt. Update and save the changes to
the file matlabroot/toolbox/local/classpath.txt when you want to access
a database regularly in multiple MATLAB sessions. You only have to perform
this task once and MATLAB remembers the location in all future sessions.
This example uses an Oracle database system that includes the JDBC drivers
in the classes111.zip file. Substitute the full path and filename for your
database system’s JDBC drivers file.

1 You can directly reference the drivers file in classpath.txt — skip to step
2. Or, you can copy the drivers file into a directory in your matlabroot
and point to that location. The matlabroot directory is where MATLAB
is installed on your system, as determined by running the matlabroot
function in the MATLAB Command Window.

For example, create the directory dbtools in matlabroot/toolbox/local.
Copy the database drivers file, for example, classes111.zip, into dbtools.

1-20

Setting Up a Data Source

2 Add the drivers file (for example classes111.zip) to the
matlabroot/toolbox/local/classpath.txt file by including this line in
classpath.txt that specifies the drivers file location:

FullPathtoJDBCDriversFilename

For example, add the following line in classpath.txt:

matlabroot/toolbox/local/dbtools/classes111.zip

For example, to point directly to a JDBC drivers file for MySQL, add this
line in classpath.txt:

D:/mysql/mysql-connector-java-3.0-bin.jar

3 Restart MATLAB before accessing the database.

If the drivers file (for example classes111.zip) is not located where
classpath.txt indicates, MATLAB will not display errors but cannot
establish a database connection. Be sure to update classpath.txt with the
correct location and filename for your drivers file if the information changes.
If MATLAB is running when you make changes to classpath.txt, be sure
to restart MATLAB.

Dynamically Update the MATLAB Java Classpath. Dynamically update
the MATLAB Java classpath when you only want to access a database in the
current session or a few other sessions. The changes are not saved after you
quit MATLAB, so you perform this task during each MATLAB session in
which you want to access the database.

To dynamically add the JDBC drivers file to the MATLAB Java classpath, in
the MATLAB Command Window, run

javaaddpath FullPathtoJDBCDriversFile

This example adds an Oracle classes111.zip file:

javaaddpath K:/databasetools/classes111.zip

This example adds a MySQL JAR file:

javaaddpath I:/mysql/mysql-connector-java-3.0/ mysql-connector-java-3.0-bin.jar

1-21

1 Getting Started

Note that the first time you establish a connection via the JDBC drivers after
using javaaddpath, you might notice a delay because MATLAB searches the
entire static Java classpath before searching the dynamic portion.

Define a JDBC Data Source in the Visual Query Builder
After pointing to the JDBC drivers filename in the MATLAB Java classpath
as described in “Include the Reference in the MATLAB Java Classpath” on
page 1-20, you need to define the JDBC data source to use it with the Visual
Query Builder. (If you use the Database Toolbox functions instead of the VQB
to access databases via JDBC drivers, you instead define the data sources
when you connect to the database as part of the database function.)

See also

• “Using an Existing JDBC Data Source” on page 1-26

• “Function Equivalent for Using an Existing JDBC Data Source” on page
1-27

• “Making Changes to JDBC Data Sources” on page 1-27

• “Troubleshooting JDBC Drivers Problems” on page 1-28

Perform these steps to define the JDBC data source:

1 Start the VQB by running querybuilder. Select Query > Define JDBC
Data Source.

Alternatively, you can run confds to open the dialog without starting the
VQB.

2 In the resulting Define JDBC Data Sources dialog box, click Create New
File.

1-22

Setting Up a Data Source

3 The Specify new JDBC data source MAT file dialog box opens. In this
dialog box, you create a MATLAB MAT file that saves the data source
information for the VQB. In subsequent sessions, you recall your data
source information from the file.

Navigate to a folder where you would like to create the MAT file, specify
a name for it, and click Save. The example shown here saves the file as
myjdbcdatasources.mat in the Work directory.

1-23

1 Getting Started

4 Now in the Define JDBC Data Sources dialog box, complete the Name,
Driver, and URL fields for your JDBC data source. Find the correct
Driver and URL format in the driver manufacturer’s documentation.
You might need to consult with your database system administrator for
the information.

• Name: the name you assign to the data source. For some databases,
the Name must exactly match the name of the database as recognized
by the machine it runs on.

• Driver: the JDBC driver name (sometimes referred to as the class that
implements the Java SQL driver for your database).

• URL: the JDBC URL object, of the form jdbc:subprotocol:subname.
The subprotocol is a database type, such as oracle. The subname
might contain other information used by Driver, such as the location of
the database and/or a port number. The subname might take the form
//hostname:port/databasename.

Some sample Driver and URL strings are listed in the reference page for
the database function under “Example 3 — Establish JDBC Connection”
on page 5-22.

1-24

Setting Up a Data Source

5 Test the connection by clicking the Test button. This is optional, but
recommended.

If your database requires a username and password, a dialog box appears
prompting you to supply them. Enter the values in both fields and click OK.

• If all information is correct, a confirmation dialog box appears
stating that the connection was successful. Note that if you used the
javaaddpath method for pointing to the JDBC drivers file, you might
notice a delay when testing the connection because it is the first access.

• If any of the information is incorrect, an error dialog box appears,
reporting an error such as the JDBC driver was not found or loaded.

Note that if you click Cancel in the username dialog box, an error dialog
appears. Click OK to close it.

6 In the Define JDBC Data Sources dialog box, click Add/Update. The data
source now appears in the Data source list in the dialog box.

7 To add more data sources, repeat steps 4 through 6 for each new data
source. You can add more data sources to it at a later point by editing
the MAT file.

• Be sure there is a reference to the JDBC drivers file in the MATLAB
Java classpath for data sources you add, as described in “Include the
Reference in the MATLAB Java Classpath” on page 1-20. For example, if
you have two different MySQL data sources, you need only one reference,
but if you also want to use an Oracle data source, you need a reference
to its drivers file as well.

• You can create a different data source MAT file to add new data sources.
But in the VQB, you can only access data sources from one MAT file at

1-25

1 Getting Started

a time. To easily access multiple data sources from the VQB, include
them in a single MAT file.

8 Click OK to close the Define JDBC Data Sources dialog box.

9 The data sources you just added now appear in the Data source list in
the VQB, replacing any other JDBC data sources that were listed. For
instructions about using the VQB, see Chapter 2, “Visual Query Builder”.

10 The JDBC data sources only appear for the current MATLAB session. To
access the data sources you just defined in a new MATLAB session, follow
the instructions at “Using an Existing JDBC Data Source” on page 1-26.

Using an Existing JDBC Data Source. After defining a data source, you
can access it in future sessions by following these steps:

1 From the VQB, select Query > Define JDBC data source.

2 In the resulting Define JDBC Data Sources dialog box, click Use Existing
File.

3 In the resulting Specify Existing JDBC Data Source MAT file dialog box,
navigate to the MAT file that contains the data sources you want to use,
select the MAT file, and click Open.

The data sources in the selected MAT file appear in the Define JDBC Data
Sources dialog box.

4 Click OK to close the Define JDBC Data Sources dialog box. The data
sources now appear in the VQB Data source list, replacing any other
JDBC data sources that were listed.

You can only access data sources from one MAT file at a time. To access
data sources from another MAT file, close the Define JDBC Data Sources
dialog box and start again. To easily access multiple data sources from the
VQB, include them in a single MAT file.

1-26

Setting Up a Data Source

Function Equivalent for Using an Existing JDBC Data Source. After
defining a data source, you can access it in future sessions using a function
instead of the VQB by running

setdbprefs('JDBCDataSourceFile','fullpathtomatfile')

For example, run

setdbprefs('JDBCDataSourceFile','D:/Work/myjdbcdatasources.mat')

You can include this statement in a MATLAB startup file to set the JDBC
data source automatically when MATLAB starts.

Making Changes to JDBC Data Sources.

1 Access the existing data source. From the VQB, select Query > Define
JDBC data source.

2 In the resulting Define JDBC Data Sources dialog box, click Use Existing
File.

3 In the resulting Specify Existing JDBC Data Source MAT file dialog box,
navigate to the MAT file that contains the data sources you want to use,
select the MAT file, and click Open.

The data sources in the selected MAT file appear in the Define JDBC Data
Sources dialog box.

4 Make changes as follows:

• To make changes to an existing data source, select it from the list of data
sources in the Define JDBC Data Sources dialog box and modify the data
in the Driver and URL fields. Click Add/Update.

• To add a new data source to the MAT file, complete the Name, Driver
and URL fields. Click Add/Update.

• To remove a data source from the MAT file, click Remove. If that was
the only data source in the MAT file, delete the MAT file too because
it no longer contains useful data.

5 Click OK to accept the changes and close the Define JDBC Data Sources
dialog box.

1-27

1 Getting Started

Troubleshooting JDBC Drivers Problems. If a data source does not appear
in the VQB list, or if when you select it you receive an error dialog box or error
in the MATLAB Command Window, it might be because you ran clear all
after defining a JDBC data source where the drivers file was added using the
javaaddpath method. In that event, redefine the data source by following the
instructions at “Using an Existing JDBC Data Source” on page 1-26.

Another reason you might see an error is because the database is unavailable
or there are problems with the connection. In that event, try to select the data
source in the VQB again, and if still unsuccessful, contact your database
administrator.

If you specified an existing data source using setdbprefs, close the VQB and
reopen it so it reflects the data source changes.

1-28

Starting the Database Toolbox

Starting the Database Toolbox
Use the Database Toolbox functions the way you would use any MATLAB
function in the Command Window. For more information, see Chapter 3,
“Using Functions in the Database Toolbox”.

To start the Visual Query Builder GUI, type querybuilder. For more
information about the tool, see Chapter 2, “Visual Query Builder”.

Online Help

• Help for the Database Toolbox is available online via the Help browser.

• Use the doc function for information about a specific function.

• In the Visual Query Builder, use the Help menu, or use the Help buttons
in dialog boxes for detailed information about features in the dialog boxes.

For a printable version of the documentation, use the PDF version on the
MathWorks Web site.

1-29

http://www.mathworks.com/access/helpdesk/help/helpdesk.html

1 Getting Started

1-30

2

Visual Query Builder

The Visual Query Builder is a graphical user interface (GUI) for exchanging
data between a database and MATLAB.

Getting Started with the Visual
Query Builder GUI (p. 2-3)

Follow the list of steps to use the
Visual Query Builder (VQB) for
importing and exporting data. Know
when to use the VQB tool and when
to use toolbox functions.

Creating and Running a Query to
Import Data (p. 2-8)

Build and run a query to import
data.

Saving, Editing, and Clearing
Variables for Queries (p. 2-13)

Save a query for later use, edit a
query, and clear variables in the
Data area.

Specifying Preferences for NULLS,
Data Format, and Error Handling
(p. 2-15)

Set preferences for data retrieval
format, NULLs, and errors.

Viewing Query Results (p. 2-19) View results as a relational display,
a chart, in a table report, and in a
customized report.

Fine-Tuning Queries Using
Advanced Query Options (p. 2-32)

Retrieve unique occurrences,
retrieve data meeting specified
criteria, order the results, use
subqueries to retrieve values from
multiple tables, and other options.

Retrieving BINARY and OTHER
Java Data (p. 2-55)

Retrieve Java object data, such as
binary images.

2 Visual Query Builder

Exporting Data Using the VQB
(p. 2-57)

Export data from MATLAB into new
rows in a database.

BOOLEAN (MATLAB logical) Data
(p. 2-62)

Import and export BOOLEAN
(MATLAB logical) data.

Generating M-Files from VQB
Queries (p. 2-66)

After creating and running a query
using the VQB, automatically
generate an M-file that contains
the equivalent Database Toolbox
functions for that query.

2-2

Getting Started with the Visual Query Builder GUI

Getting Started with the Visual Query Builder GUI
The Visual Query Builder (VQB) is an easy-to-use graphical user interface
(GUI) for exchanging data with your database. With the VQB, you build
queries to retrieve data by selecting information from lists rather than by
entering MATLAB functions. The VQB retrieves the data from a database
and puts it in a MATLAB cell array, structure, or numeric matrix so you can
process the data using the MATLAB suite of functions. With the VQB, you can
display information retrieved as cell arrays in relational tables, reports, and
charts. You can also use the VQB to export data from MATLAB into new rows
in your database. Review these key topics when you start using the VQB.

• “Before You Start” on page 2-3

• “Starting the Visual Query Builder” on page 2-4

• “Steps for Retrieving Data with the VQB” on page 2-4

• “Steps for Exporting Data with the VQB” on page 2-6

• “Help and Demos for the Visual Query Builder” on page 2-7

• “Quitting the Visual Query Builder” on page 2-7

You can use Database Toolbox functions instead of the VQB. See “Using the
Visual Query Builder Versus Functions” on page 1-5 for more information.

Before You Start
Before using the Visual Query Builder, set up your data source, such as
the sample data sources used for the examples in this documentation: the
dbtoolboxdemo data source (tutorial database) and the sampleDB data
source (Nwind database), both for Microsoft Access.

Instructions for setting up these examples or any data source are in “Setting
Up a Data Source” on page 1-12.

If you don’t have Microsoft Access, you should still be able to follow the
examples because they are not complex. If your version of Microsoft Access is
different from the one used for the examples, you might get different results.
If your results differ, check your version of Access, and compare the table and
column names in your databases to those used in the examples.

2-3

2 Visual Query Builder

Starting the Visual Query Builder
To start the Visual Query Builder interface, type

querybuilder

at the MATLAB prompt. The Visual Query Builder opens. When you start the
VQB, all fields except the Data source are blank. The Data source lists the
data sources you defined in “Setting Up a Data Source” on page 1-12. You can
also start the VQB using the Start menu in the MATLAB desktop.

Steps for Retrieving Data with the VQB
This is a summary of the steps you take to retrieve data using the VQB.
Details are in subsequent topics.

2-4

Getting Started with the Visual Query Builder GUI

2-5

2 Visual Query Builder

Steps for Exporting Data with the VQB
This is a summary of the steps you take to export data using the VQB. Details
are in “Exporting Data Using the VQB” on page 2-57.

2-6

Getting Started with the Visual Query Builder GUI

Help and Demos for the Visual Query Builder

Getting Help in the VQB
While using the Visual Query Builder, get online help by

• Selecting Visual Query Builder Help from the Help menu.

• Clicking Help in any Visual Query Builder dialog box. Detailed instructions
for that dialog box appear in the Help browser.

For more information about getting help, see Help Browser Overview in the
MATLAB documentation.

Running a Visual Query Builder Demo
You can run a demo of the Visual Query Builder to illustrate its main features.
In the Visual Query Builder, select Demos from the Help menu. Follow the
instructions in the Command Window, which prompt you to press Enter
to move through the demo.

The demo runs on Windows platforms only. It uses the dbtoolboxdemo data
source (tutorial database). Instructions for setting up this data source are
in “Setting Up a Data Source” on page 1-12.

Quitting the Visual Query Builder
To quit using the Visual Query Builder, select Exit from the Query menu,
or click the close box.

2-7

2 Visual Query Builder

Creating and Running a Query to Import Data
Build and run a query to import data from your database into MATLAB. Then
save the query for use again later.

Before You Start
Before using the VQB, set up a data source — see “Setting Up a Data Source”
on page 1-12. The examples here use the dbtoolboxdemo data source.

Then open the VQB by typing in the Command Window

querybuilder

Building and Executing a Query
In the VQB, perform these steps to create and run a query to retrieve data:

1 In the Data operation field, choose Select, meaning you want to select
data from a database.

2 From the Data source list box, select the data source from which you want
to import data. The list includes the data sources you defined in “Setting
Up a Data Source” on page 1-12. Remember that JDBC data sources must
be defined for each MATLAB session, and that the data sources from only a
single JDBC data source MAT-file can be listed at one time.

• For this example, select dbtoolboxdemo, which is the data source for the
tutorial database.

• If a username and password are required to access the data source,
then a dialog box appears prompting you to supply them. Provide the
information and click OK. If you click Cancel, an error dialog box
appears; click OK to close it. The username and password are retained
only while the VQB is open. If you close the VQB and reopen it, you need
to re-enter the username and password to access the data source.

• After selecting a data source, the set of Tables in that data source
appears.

2-8

Creating and Running a Query to Import Data

3 From the Tables list box, select the table that contains the data you want
to import. For this example, select salesVolume. Table names that include
spaces appear in quotation marks. For a Microsoft Excel database, the
Tables are Excel sheets.

After you select a table, the set of Fields (column names) in that table
appears.

4 From the Fields list box, select the fields containing the data you want to
import. To select more than one field, hold down the Ctrl key or Shift key
while selecting. For this example, select the fields StockNumber, January,
February, and March. Field names that include spaces appear in quotation
marks. To deselect an entry, use Ctrl+click.

As you select items from the Fields list, the query appears in the SQL
statement field.

2-9

2 Visual Query Builder

5 In the MATLAB workspace variable field, assign a name for the data
returned by the query. For this example, use A.

6 Click Execute to run the query and retrieve the data. The query runs,
retrieves data, and stores it in MATLAB, which in this example is a cell
array assigned to the variable A. In the Data area, information about the
query result appears.

If any of the data to be retrieved is a Java BINARY or OTHER type, for
example, a bitmap image, the retrieval might be time intensive. For more
information about retrieving this type of data, see “Retrieving BINARY and
OTHER Java Data” on page 2-55.

2-10

Creating and Running a Query to Import Data

If an error dialog box appears, the query is invalid. For example, you cannot
perform a query on table and field names that contain quotation marks.

7 Double-click A in the Data area. The contents of A are displayed in the
Array Editor, where you can view and edit the data. See the MATLAB
Array Editor documentation for details about using it.

Another way to see the contents of A is to type A in the Command Window.
For example, to read the following results, sales for item 400876 are 3000
in January, 2400 in February, and 1500 in March.

2-11

2 Visual Query Builder

Note that if the data contains a Java OTHER data type, some fields in A
might be empty. This happens when Java cannot pass the data through the
JDBC/ODBC bridge.

2-12

Saving, Editing, and Clearing Variables for Queries

Saving, Editing, and Clearing Variables for Queries
Topics covered in this section are

• “Saving a Query” on page 2-13

• “Editing a Query” on page 2-14

• “Clearing Variables in the Data Area” on page 2-14

Saving a Query
After building a query in the VQB, you can save it for later use. To save
a query:

1 Select Save from the Query menu.

The Save SQL Statement dialog box appears.

2 Complete the File name field and click Save. For the example in “Building
and Executing a Query” on page 2-8, save the query using basic as the
filename. Do not include spaces in the filename.

The query is saved with a .qry extension.

For a Select query (retrieves data), the MATLAB workspace variable name
you assigned for the query results and the query preferences are not saved
as part of the query. This protects you from inadvertently overwriting an
existing variable in the MATLAB workspace when you run a saved query.
For an Insert query (exports data), the MATLAB workspace variable name
whose data you exported is saved as part of the query, although preferences
are not saved.

Using a Saved Query
To use a saved query:

1 Select Load from the Query menu.

The Load SQL Statement dialog box appears.

2-13

2 Visual Query Builder

2 Select the name of the query you want to load and click Open. For the
example, select basic.qry.

The VQB fields reflect the values for the saved query.

3 To run a Select query (imports data), assign a variable in the MATLAB
workspace variable field and click Execute.

For an Insert query (exports data), the saved query might have included a
workspace variable, which is shown as part of the MATLAB command
field. Type that variable name or type a new name in the MATLAB
workspace variable field. Press Return or Enter to see the updated
MATLAB command. Click Execute to run the query.

See Also
You can also generate an M-file for the query that allows you to run it from the
Command Window. See “Generating M-Files from VQB Queries” on page 2-66.

Editing a Query
In the VQB, you can edit a query you created or opened by changing selections
you made, and then executing the query again. To deselect an entry, use
Ctrl+click.

You can also directly edit the entry in the SQL statement or MATLAB
command field. After editing, you can save the query for later use.

Clearing Variables in the Data Area
Variables in the Data area include those you assigned for query results, as
well as any variables you assigned in the Command Window. The variables do
not appear in the Data area until you execute a query. They remain in the
Data area until you clear them in the Command Window using the clear
function, and then execute a query.

2-14

Specifying Preferences for NULLS, Data Format, and Error Handling

Specifying Preferences for NULLS, Data Format, and Error
Handling

Using preferences, you can specify

• How the query builder represents NULL data

• Format of data retrieved

• Method for error notification

To set preferences

1 Select Preferences from the Query menu.

The Database Toolbox Preferences dialog box appears, showing the current
settings.

2-15

2 Visual Query Builder

2 Change the current preference settings to the new values and click OK.
For this example, make the following changes.

Preference Description New Value

Read NULL
numbers as

How NULL numbers in a database are represented when
imported into MATLAB.

For the new value, 0, the NULL data in the example
results will appear as 0’s. Previously, they appeared as
NaN values.

0

Data return
format

Format for data imported into MATLAB. Select a value
based on the type of data you are importing, memory
considerations, and your preferred method of working
with retrieved data.

Cell arrays and structures support mixed data types,
but require more memory and are processed more
slowly than numeric matrices. Use the numeric format
if the data you are retrieving consists only of numeric
data or if the nonnumeric data is not relevant. With
the numeric format, any nonnumeric data is converted
to the representation specified in the Read NULL
numbers as preference, for example, NaN. When Read
NULL numbers as is numeric, the Data return
format must also be numeric. For information about
cell arrays, see “Working with Cell Arrays in MATLAB”
on page 3-39. For information about working with
strings, see “Characters and Strings”in the MATLAB
Programming documentation.

Because results in the example are all numeric, we can
change from cellarray to numeric to reduce memory
required.

numeric

Error
handling

Behavior for handling errors when importing data. In
the Visual Query Builder, setting the value to store or
empty means any errors are reported in a dialog box
rather than in the Command Window.

report

2-16

Specifying Preferences for NULLS, Data Format, and Error Handling

Preference Description New Value

Set the value to report, which means that any errors
from running the query will display immediately in the
Command Window.

For more information about these preferences, see the property descriptions
on the reference page for setdbprefs, which is the equivalent function for
setting preferences.

3 Enter a workspace variable, A, and click Execute to run the query again.

Information about the retrieved data appears in the Data area. Note that
the Memory size of A is 320 bytes, compared to 2720 bytes when we ran
the query using the previous settings for preferences. This is because we
changed the Data return format to numeric, where previously it was
set to cellarray. The numeric format requires far less memory than the
cellarray format. However, the cellarray (or structure) format is
required if you want to retrieve data that is not all numeric, such as strings.
If you use the numeric format to retrieve data that contains strings, the
strings are returned as NULL values, represented by the preference you
specified for Read NULL numbers as.

4 To see the results, type A in the Command Window. MATLAB returns

A =

125970 1400 1100 981
212569 2400 1721 1414
389123 1800 1200 890
400314 3000 2400 1800
400339 4300 0 2600
400345 5000 3500 2800
400455 1200 900 800
400876 3000 2400 1500
400999 3000 1500 1000
888652 0 900 821

Results are not in brackets because data is a numeric matrix rather than a
cell array. NULL values are now represented by 0’s instead of NaNs.

2-17

2 Visual Query Builder

Saving Preferences
Preferences apply to the current MATLAB session. They are not saved with a
query. The default preferences apply when you start a new session, or after
clearing all variables (for example, clear all). It is a good practice to verify
the preference settings before you run a query.

Another way to set preferences is by using the setdbprefs function. To use
the same preferences whenever you run MATLAB, include the setdbprefs
function in your startup.m file — for more information, see startup.

2-18

Viewing Query Results

Viewing Query Results
After running a query in the Visual Query Builder, you can view the retrieved
data by

• Typing the variable name in the MATLAB Command Window to view it
there, or

• Double-clicking the variable in the VQB Data area to view the data in
the Array Editor

The VQB Display menu provides additional options for viewing data:

• “Relational Display of Data” on page 2-19

• “Chart Display of Results” on page 2-23

• “Report Display of Results in a Table” on page 2-26

• “Customized Display of Results in the Report Generator” on page 2-28

The examples in this section use the saved query from the earlier example,
basic.qry. Use the steps below to access this query.

1 Select Query > Preferences and set Read NULL numbers as to 0.

2 Select Query > Load.

3 In the Load SQL Statement dialog box, select the File name, basic.qry.
and click Open.

4 In the VQB, type a value for the MATLAB workspace variable, for
example, A, and then click Execute.

Relational Display of Data

1 After executing a query, select Data from the Display menu.

The query results appear in a figure window.

2-19

2 Visual Query Builder

The display shows only the unique values for each field, so you do not read
each row as a single record. For the basic.qry example, there are 10
entries for StockNumber, 8 entries for January and February, and
10 entries for March, corresponding to the number of unique values in
those fields.

2 Click a value in the display, for example StockNumber 400876, to see
the associated values.

The data associated with the selected value is shown in bold and connected
via a dotted line. For example, sales for item 400876 are 3000 in January,
2400 in February, and 1500 in March.

2-20

Viewing Query Results

As another example, click 3000 under January. It shows three different
items with sales of 3000 units in January: 400314, 400876, and 400999.

2-21

2 Visual Query Builder

3 Because the display is presented in a MATLAB figure window, you can
use some MATLAB figure features. For example, you can print the figure
and annotate it. To print it, select File > Print. You can use other print
features, such as, File > Page Setup and File > Print Preview. For
more information, use the figure window Help menu.

4 If the query results include many entries, the display might not effectively
show all of them. You can stretch the window to make it larger, modify
the query so there are fewer results, or display the results in a table (see
“Report Display of Results in a Table” on page 2-26).

2-22

Viewing Query Results

Chart Display of Results

1 After executing a query, select Chart from the Display menu.

The Charting dialog box appears.

2 Select the type of chart you want to display from the Charts list box (plot
is the default). For example, select pie to display a pie chart.

The preview of the chart at the bottom of the dialog box shows the result of
your selection. For this example, the pie chart replaces the plot line, with
each stock item appearing in a different color.

2-23

2 Visual Query Builder

3 Select the data you want to display in the chart from the X data, Y data,
and Z data list boxes. For the pie chart example, select March from the
X data list box to display a pie chart of March data.

The preview of the chart at the bottom of the dialog box reflects the
selection you made. For this example, the pie chart shows percentages
for March data.

4 To display a legend, which maps the colors to the stock numbers, select
the Show legend check box.

The Legend labels become available.

5 Select StockNumber from the Legend labels list box.

A legend appears in the preview of the chart. You can drag and move the
legend in the preview.

2-24

Viewing Query Results

6 Click Display.

The pie chart appears in a figure window. Because the display is presented
in a MATLAB figure window, you can use some MATLAB figure features
such as printing or annotating the figure. To print the figure, select
File > Print. You can also use File > Page Setup and File > Print
Preview.

For example:

• Resize the window by dragging any corner or edge.

• Drag the legend to another position.

• Annotate the chart using the Insert menu and the annotation buttons
in the Plot Edit toolbar. For more information, use the figure window’s
Help menu.

2-25

2 Visual Query Builder

7 Click Close to close the Charting dialog box.
There are many different ways to present the query results using the chart
feature. For more information, click Help in the Charting dialog box.

Report Display of Results in a Table
The report display presents the results in your system’s default Web browser:

1 Because some browser configurations do not launch automatically, you
might need to start your system Web browser before using this feature.

2 After executing a query, select Report from the Display menu.

2-26

Viewing Query Results

The query results appear as a table in your system Web browser.

Each row represents a record from the database. For example, sales for
item 400876 are 3000 in January, 2400 in February, and 1500 in March.

3 Use your Web browser to save the report as an HTML page if you want to
view it later. To print the report, use the print features in your Web browser.

2-27

2 Visual Query Builder

Customized Display of Results in the Report
Generator
If the MATLAB Report Generator is installed, you can customize the display
of results using that product.

1 Because some browser configurations do not launch automatically, you
might need to start your system Web browser before using this feature.

2 After executing a query, select Report Generator from the Display menu.

The Report Generator interface opens.

3 In the contents listing, select databasetlbx.rpt (in
matlabroot/toolbox/database/vqb). This is a sample report
template. You can create and use your own reports.

4 Modify the report format — click Open Report.

a In the left column, under Report Generator > Report
databasetlbx.rpt, select Table - ans.

b In the right column, under Table Content, for Workspace Variable
Name, replace the default, 'ans' with the Workspace variable name
you had assigned to the query result in the Visual Query Builder, for
example, ’A’.

c In the right column, under Header/Footer Options, set the Number
of header rows to 0.

d Click Apply.

2-28

Viewing Query Results

Click the Help button in the dialog box for more information about this
and other features of the Report Generator.

5 To run and view the report, select File > Generate Report.

The report appears in your system’s default Web browser.

2-29

2 Visual Query Builder

6 The names of the fields from the Visual Query Builder do not automatically
appear as column headers in the report, as they did for the feature
described in “Report Display of Results in a Table” on page 2-26. You can
modify the workspace variable, for example, A, to include the field names so
that they will appear in the report. For example, in the Command Window,
redefine A using

A = [{'Stock Number', 'January', 'February', 'March'};A]

In the Report Generator, change the Header/Footer Options, Number
of header rows to 1 (refer back to step 4-c for details). The output report
now shows the field names as headings.

2-30

Viewing Query Results

Each row represents a record from the database. For example, sales for item
400876 are 3000 in January, 2400 in February, and 1500 in March.

2-31

2 Visual Query Builder

Fine-Tuning Queries Using Advanced Query Options
Use advanced query options when retrieving data with the Visual Query
Builder for these tasks:

• “Retrieving Unique Occurrences” on page 2-32

• “Retrieving Information That Meets Specified Criteria” on page 2-34

• “Evaluating Multiple Constraints” on page 2-37

• “Presenting Results in Specified Order” on page 2-42

• “Creating Subqueries for Values from Multiple Tables” on page 2-45

• “Creating Queries for Results from Multiple Tables” on page 2-50

• “Other Features in Advanced Query Options” on page 2-54

For more information about advanced query options, select Help in any of the
dialog boxes for the options.

Retrieving Unique Occurrences
In the Visual Query Builder Advanced query options, select Distinct to
limit results to only unique occurrences. Select All to retrieve all occurrences.
For example

1 Set preferences; for this example, set Data return format to cellarray
and Read NULL numbers as to NaN.

2 For the Data operation, choose Select.

3 From Data source, select a data source; for this example, dbtoolboxdemo.

4 From Tables, select a table; for this example, SalesVolume.

5 From Fields, select the fields; for this example, January.

2-32

Fine-Tuning Queries Using Advanced Query Options

6 Run the query to retrieve all occurrences:

a In Advanced query options, select All.

b Assign a MATLAB workspace variable; for this example, All.

c Click Execute.

7 Run the query to retrieve only unique occurrences:

a In Advanced query options, select Distinct.

b Assign a MATLAB workspace variable, for this example, Distinct.

c Click Execute.

8 In the Data area, the Workspace variable - Size shows 10x1 for All
and 8x1 for Distinct.

9 In the Command Window, type All, Distinct to display the query results.

The value 3000, appears three times in All, but appears only once in
Distinct.

2-33

2 Visual Query Builder

Retrieving Information That Meets Specified Criteria
Use the Where field in Advanced query options to retrieve only the
information that meets the criteria you specify. This example uses the
basic.qry query that was created and saved as explained in “Creating and
Running a Query to Import Data” on page 2-8. It limits the results to those
stock numbers greater than 400000 and less than 500000:

1 Load basic.qry. For instructions, see “Using a Saved Query” on page 2-13.

2 Set preferences; for this example, set Data return format to cellarray
and Read NULL numbers as to NaN.

3 In Advanced query options, click Where.

The Where Clauses dialog box appears.

4 From Fields, select the fields whose values you want to restrict. For
example, select StockNumber.

5 Use Condition to specify the criteria. For example, specify that the
StockNumber be greater than 400000:

a Select Relation.

b From the drop-down list to the right of Relation, select >.

c In the field to the right of the drop-down list, type 400000.

2-34

Fine-Tuning Queries Using Advanced Query Options

d Click Apply.

The clause appears in the Current clauses area.

2-35

2 Visual Query Builder

6 You can add another condition. First you edit the current clause to add the
AND operator to it, and then you provide the new condition.

a Select StockNumber > 400000 from Current clauses.

b Click Edit (or double-click theStockNumber entry in Current clauses).

The Condition reflects the StockNumber clause.

c For Operator, select AND.

d Click Apply.

The Current clauses updates to show

StockNumber > 400000 AND

7 Add the new condition. For example, specify that StockNumber must also
be less than 500000:

a From Fields, select StockNumber.

b Select Relation from Condition.

c From the drop-down list to the right of Relation, select <.

d In the field to the right of the drop-down list, type 500000.

e Click Apply.

The Current clauses area now shows

StockNumber > 400000 AND
StockNumber < 500000

8 Click OK.

The Where Clauses dialog box closes. The Where field and the SQL
statement in the Visual Query Builder dialog box reflect the where clause
you specified.

9 Assign a MATLAB workspace variable; for this example, A.

10 Click Execute.

The results are a 6-by-4 matrix.

2-36

Fine-Tuning Queries Using Advanced Query Options

11 To view the results, type A in the Command Window. Compare these to
the results for all stock numbers, which is a 10-by-4 matrix (see step 7 in
“Building and Executing a Query” on page 2-8).

12 Select Save from the Query menu and name this query basic_where.qry
for use with subsequent examples.

Evaluating Multiple Constraints
In the Where Clauses dialog box, you can group together constraints so that
the group of constraints is evaluated as a whole in the query. For the example,
basic_where.qry, where StockNumber is greater than 400000 and less than
50000, modify the query to group constraints. The new query will retrieve
results where sales in any of the 3 months is greater than 1500 units, as long
as sales for each of the 3 months is greater than 1000 units.

Click Where in the Visual Query Builder. The Where Clauses dialog box
appears as follows, to retrieve data where the StockNumber is greater than
400000 and less than 50000.

2-37

2 Visual Query Builder

1 Add the criteria to retrieve data where sales in any of the 3 months is
greater than 1500 units.

a In Current clauses, select StockNumber < 500000, and then click Edit.

b For Operator, select OR, and then click Apply.

c In Fields, select January. For Relation, select > and type 1500 in the
field for it. For Operator, select OR, and then click Apply.

d In Fields, select February. For Relation, select > and type 1500 in the
field for it. For Operator, select OR, and then click Apply.

e In Fields, select March. For Relation, select > and type 1500 in the field
for it. Then click Apply.

The Where Clauses dialog box appears as follows.

2-38

Fine-Tuning Queries Using Advanced Query Options

2 Group the criteria requiring any of the months to be greater than 1500
units.

a In Current clauses, select the statement January >1500 OR.

b Shift+click to also select February > 1500 OR.

c Shift+click to also select March > 1500.

d Click Group.

An opening parenthesis is added before January, and a closing
parenthesis is added after March > 1500, signifying that these
statements are evaluated as a whole.

2-39

2 Visual Query Builder

3 Add the criteria to retrieve data where sales in each of the 3 months is
greater than 1000 units:

a In Current clauses, select the statement March> 1500), and then
click Edit.

b For Operator, select AND, and then click Apply.

c In Fields, select January. For Relation, select > and type 1000 in the
field for it. For Operator, select AND, and then click Apply.

d In Fields, select February. For Relation, select > and type 1000 in the
field for it. For Operator, select AND, and then click Apply.

e In Fields, select March. For Relation, select > and type 1000 in the field
for it. Then click Apply.

The Where clauses dialog box appears as follows.

2-40

Fine-Tuning Queries Using Advanced Query Options

f Click OK.

The Where Clauses dialog box closes. The SQL statement in the Visual
Query Builder dialog box reflects the modified where clause. Because the
clause is long, you have to use the right arrow key in the field to see all
of the contents.

4 Assign a MATLAB workspace variable, for example, AA.

5 Click Execute.

The results are a 7-by-4 matrix.

2-41

2 Visual Query Builder

6 To view the results, type AA in the Command Window. MATLAB returns

Removing Grouping
To remove grouping criteria in the Where Clauses dialog box, in Current
clauses, select all of the statements in the group, and then click Ungroup.
The parentheses are removed from the statements.

For the above example, to remove the grouping, select

(January > 1000 AND

and then Shift+click to also select

February > 1000 AND
March > 1000)

Then click Ungroup. The three statements are no longer grouped.

Presenting Results in Specified Order
By default, the order of the rows in the query results depends on their order
in the database, which is effectively random. Use Order by in Advanced
query options to specify the order in which results appear. This example
uses the basic_where.qry query, which was created and saved in the
example presented in “Retrieving Information That Meets Specified Criteria”
on page 2-34.

This example sorts the results of basic_where.qry, so that January is the
primary sort field, February the secondary, and March the last. Results for
January and February are ascending, and results for March are descending:

2-42

Fine-Tuning Queries Using Advanced Query Options

1 Load basic_where.qry. For instructions, see “Using a Saved Query” on
page 2-13.

2 Set preferences. For this example, set Data return format to cellarray
and Read NULL numbers as to NaN.

3 In Advanced query options, click Order by.

The Order By Clauses dialog box appears.

4 For the Fields whose results you want to specify the order of, specify the
Sort key number and Sort order. For example, specify January as the
primary sort field, with results displayed in ascending order:

a From Fields, select January.

b For Sort key number, type 1.

c For Sort order, select Ascending.

d Click Apply.

The Current clauses area now shows

January ASC

2-43

2 Visual Query Builder

5 Specify February as the second sort field, with results displayed in
ascending order.

a From Fields, select February.

b For Sort key number, type 2.

c For Sort order, select Ascending.

d Click Apply.

The Current clauses area now shows

January ASC
February ASC

6 Specify March as the third sort field, with results displayed in descending
order.

a From Fields, select March.

b For Sort key number, type 3.

c For Sort order, select Descending.

d Click Apply.

The Current clauses area now shows

January ASC
February ASC
March DESC

7 Click OK.

The Order By Clauses dialog box closes. The Order by field and the SQL
statement in the Visual Query Builder reflect the order by clause you
specified.

8 Assign a MATLAB workspace variable, for example, B.

9 Click Execute.

2-44

Fine-Tuning Queries Using Advanced Query Options

10 To view the results, type B in the Command Window. Compare these to the
unordered query results, shown as A.

For B, results are first sorted by January sales, in ascending order. The
lowest value for January sales, 1200 (for item number 400455) appears first
and the highest value, 5000 (for item number for 400345) appears last.

For items 400999, 400314, and 400876, January sales were equal at 3000.
Therefore, the second sort key, February sales, applies. February sales
appear in ascending order – 1500, 2400, and 2400 respectively.

For items 400314 and 400876, February sales were 2400, so the third sort
key, March sales, applies. March sales appear in descending order – 1800
and 1500 respectively.

Creating Subqueries for Values from Multiple Tables
Use the Where feature in Advanced query options to specify a subquery,
which further limits a query by using values found in other tables. This is
referred to as nested SQL. With the VQB, you can include only one subquery;
use Database Toolbox functions to use multiple subqueries.

This example uses basic.qry (see “Creating and Running a Query to
Import Data” on page 2-8). It retrieves sales volumes for the product whose
description is Building Blocks. The table used for basic.qry, salesVolume,

2-45

2 Visual Query Builder

has sales volumes and a stock number field, but not a product description
field. Another table, productTable, has the product description and stock
number, but not the sales volumes. Therefore, the query needs to look at
productTable to get the stock number for the product whose description is
Building Blocks, and then has to look at the salesVolume table to get the
sales volume values for that stock number:

1 Load basic.qry. For instructions, see “Using a Saved Query” on page 2-13.

This creates a query that retrieves the values for January, February, and
March sales for all stock numbers from the salesVolume table.

2 Set preferences. For this example, set Data return format to cellarray
and Read NULL numbers as to NaN.

3 In Advanced query options, click Where.

The Where Clauses dialog box appears.

4 Click Subquery.

The Subquery dialog box appears.

2-46

Fine-Tuning Queries Using Advanced Query Options

5 From Tables, select the table that contains the values you want to
associate. In this example, select productTable, which contains the
association between the stock number and the product description.

The fields in that table appear.

6 From Fields, select the field that is common to this table and the table
from which you are retrieving results (the table you selected in the Visual
Query Builder dialog box). In this example, select stockNumber.

This begins creating the SQL subquery statement to retrieve the stock
number from productTable.

7 Create the condition that limits the query. In this example, limit the query
to those product descriptions that are Building Blocks.

a In Subquery Where clauses, select productDescription from Fields.

2-47

2 Visual Query Builder

b For Condition, select Relation.

c From the drop-down list to the right of Relation, select =.

d In the field to the right of the drop-down list, type 'Building Blocks'
(include the single quotation marks to denote it is a string).

e Click Apply.

The clause appears in the Current subquery Where clauses area and
updates the SQL subquery statement.

8 In the Subquery dialog box, click OK.

The Subquery dialog box closes.

9 In the Where Clauses dialog box, click Apply.

2-48

Fine-Tuning Queries Using Advanced Query Options

This updates the Current clauses area using the subquery criteria
specified in steps 3 through 8.

10 In the Where Clauses dialog box, click OK.

This closes the Where Clauses dialog box and updates the SQL statement
in the Visual Query Builder dialog box.

11 In the Visual Query Builder dialog box, assign a MATLAB workspace
variable, for example, C.

12 Click Execute.

The results are a 1-by-4 matrix.

13 Type C at the prompt in the Command Window to see the results.

14 The results are for item 400345, which has the product description Building
Blocks, although that is not evident from the results. To verify that the
product description is actually Building Blocks, run this simple query.

2-49

2 Visual Query Builder

a Select dbtoolboxdemo as the Data source. This clears the VQB
selections made during a previous query.

b Select productTable from Tables.

c Select stockNumber and productDescription from Fields.

d Assign a MATLAB workspace variable, for example, P.

e Click Execute.

f Type P at the prompt in the Command Window to view the results.

The results show that item 400345 has the product description Building
Blocks. “Creating Queries for Results from Multiple Tables” on page
2-50 creates a query that includes the product description in the results.

Creating Queries for Results from Multiple Tables
You can select multiple tables to create a query whose results include values
from both tables. This is called a join operation in SQL.

This example retrieves sales volumes by product description. The example is
very similar to the example in “Creating Subqueries for Values from Multiple
Tables” on page 2-45. The difference is that this example creates a query that
uses both tables in order to include the product description rather than the
stock number in the results.

The salesVolume table has a sales volume and a stock number field, but not
a product description field. Another table, productTable, has the product
description and the stock number, but not sales volumes. Therefore, the query
needs to retrieve data from both tables and equate the stock number from
productTable with the stock number from the salesVolume table:

2-50

Fine-Tuning Queries Using Advanced Query Options

1 Set preferences. For this example, set Data return format to cellarray
and Read NULL numbers as to NaN.

2 For Data operation, choose Select.

3 Select the Data source, for this example, dbtoolboxdemo. This clears the
VQB selections made during a previous query.

The tables in that data source appear in Tables.

4 From Tables, select the tables from which you want to retrieve data. For
example, Ctrl+click productTable and salesVolume to select both tables.

The fields (columns) in those tables appear in Fields. Note
that the field names now include the table names. For example,
productTable.stockNumber is the field name for the stock number in the
product table, and salesVolume.StockNumber is the field name for the
stock number in the sales volume table.

5 From Fields, select these fields to be included in the results.
For example, Ctrl+click on productTable.productDescription,
salesVolume.January, salesVolume.February, and salesVolume.March.

6 In Advanced query options, click Where to make the necessary
associations between fields in different tables. For example, the
where clause equates the productTable.stockNumber with the
salesVolume.StockNumber so that the product description is associated
with sales volumes in the results.

The Where Clauses dialog box appears.

7 In the Where Clauses dialog box:

a Select productTable.stockNumber from Fields.

b For Condition, select Relation.

c From the drop-down list to the right of Relation, select =.

d In the field to the right of the drop-down list, type
salesVolume.StockNumber.

e Click Apply.

2-51

2 Visual Query Builder

The clause appears in the Current clauses area.

f Click OK.

The Where Clauses dialog box closes. The Where field and SQL
statement in the Visual Query Builder dialog box reflect the where
clause.

8 Assign a MATLAB workspace variable, for example, P1.

9 Click Execute to run the query.

The results are a 10-by-4 matrix.

2-52

Fine-Tuning Queries Using Advanced Query Options

10 Type P1 at the prompt in the Command Window to see the results.

2-53

2 Visual Query Builder

Other Features in Advanced Query Options
For more information about advanced query options, select the option and
then click Help in the resulting dialog box. For example, click Group by in
Advanced query options, and then click Help in the Group by Clauses
dialog box.

2-54

Retrieving BINARY and OTHER Java Data

Retrieving BINARY and OTHER Java Data
The Database Toolbox supports the data types listed in “Data Types” on page
1-10 with no data manipulation required. You can also import BINARY and
OTHER Java SQL objects, such as bitmap images. The process for importing
BINARY and OTHER Java objects differs from the standard VQB import process
in these ways:

• MATLAB cannot directly process these Java data types when retrieved.
You need to understand the object contents to use the data. You might
need to massage the data, such as stripping off leading entries added by
your driver during data retrieval.

• For the OTHER data type, the returned data is sometimes empty because
Java does not always successfully pass it through the JDBC/ODBC bridge.

Retrieving Images in Data
This example uses the SampleDB data source and a sample file for parsing
image data, matlabroot/toolbox/database/vqb/parsebinary.m. For more
information about the data source, see “Setting Up a Data Source” on page
1-12.

1 In the VQB dialog box, select

a Select for Data Operation.

b SampleDB from Data source.

c Employees from Tables.

d EmployeeID and Photo from Fields.

The Photo field contains bitmap images.

2 Select Query > Preferences and specify the Data return format as
cellarray or structure.

3 Assign A as the MATLAB workspace variable and click Execute.

2-55

2 Visual Query Builder

4 Type A to view the contents.

MATLAB displays

A =
[1] [21626x1 B[]]
[2] [21626x1 B[]]
[3] [21722x1 B[]]
[4] [21626x1 B[]]
[5] [21626x1 B[]]
[6] [21626x1 B[]]
[7] [21626x1 B[]]
[8] [21626x1 B[]]
[9] [21626x1 B[]]

The data in column 2 of the imported data, [21626x1 B[]], indicates that
the data type is BINARY.

5 Assign the first element in the image data to the variable photo. Type

photo = A{1,2};

6 Run the sample program parsebinary, which will display photo as a
bitmap image.

parsebinary(photo, 'BMP');

The bitmap image displays in a figure window.

The parsebinary M-file writes the retrieved data to a file, strips ODBC
header information, and displays a bitmap image. For more details, type
help parsebinary or view the parsebinary M-file in the MATLAB Editor
by typing open parsebinary.

This is just one example of retrieving a BINARY object. Your application might
require different manipulations to process the data in MATLAB.

2-56

Exporting Data Using the VQB

Exporting Data Using the VQB
Build and run a query to export data from MATLAB into new rows in a
database. Then save the query for use again later.

Limitations

• You cannot use the VQB to replace existing data in a database with data
from MATLAB. Instead, use the Database Toolbox update function.

• Use Database Toolbox functions instead of the VQB if you use commit or
rollback features when exporting data.

• Because the VQB uses the insert function instead of fastinsert, you
cannot export binary data using the VQB, and data export operations
are slower with the VQB. You can instead use the Database Toolbox
fastinsert function to work around these limitations.

Before You Start
Before using the VQB, set up a data source — see “Setting Up a Data Source”
on page 1-12. The examples here use the SampleDB data source.

To Start
To open the VQB, in the Command Window, type

querybuilder

In the VQB, perform these steps to create and run a query to export data:

1 In the Data operation field, select Insert, meaning you want to insert
data into a database.

2 From the Data source list box, select the data source into which you want
to export data. The list contains the data sources you defined in “Setting
Up a Data Source” on page 1-12.

For this example, select SampleDB, which is the data source for the Nwind
database.

2-57

2 Visual Query Builder

After selecting a data source, the set of Tables in that data source appears.

3 From the Tables list box, select the table into which you want to export
data. For this example, select Avg_Freight_Cost. Table names that
include spaces appear in quotation marks. For a Microsoft Excel database,
the Tables are Excel sheets.

After you select a table, the set of Fields (column names) in that table
appears.

4 From the Fields list box, select the fields into which you want to export
data. To select more than one field, hold down the Ctrl key or Shift
key while selecting. For this example, select the fields Calc_Date and
Avg_Cost. Field names that include spaces appear in quotation marks. To
deselect an entry, use Ctrl+click.

2-58

Exporting Data Using the VQB

As you select items from the Fields list, the query appears in the MATLAB
command field.

5 Assign the data you want to export to a variable. For this example, type
the following in the Command Window.

export_data = {'07-Aug-2003',50.44};

This cell array contains a date and a numeric value.

If the data contains NULL values, specify the format they take. Select
Query > Preferences and specify Write NULL numbers from and
Write NULL strings from. For more information about these preferences,
see the property descriptions on the reference page for setdbprefs, which
is the equivalent function for setting preferences.

6 In the VQB MATLAB workspace variable field, enter the name of
the variable whose data you want to export. For this example, use
export_data. Press Enter or Return to view the MATLAB command
that exports the data.

7 Click Execute to run the query and export the data.

The query runs and exports the data. In the Data area, information about
the exported data appears.

2-59

2 Visual Query Builder

If an error dialog box appears, the query is invalid. For example, you
cannot export to a table or field name that contains quotation marks.

2-60

Exporting Data Using the VQB

8 In Microsoft Access, view the Avg_Freight_Cost table to verify the results.

Note that the Avg_Cost value was rounded to a whole number to match
the properties of that field in Access.

9 To save this query, select Query > Save and name it export.qry. See
“Saving, Editing, and Clearing Variables for Queries” on page 2-13. You
can automatically generate an M-file that contains the Database Toolbox
functions to run this query — see “Generating M-Files from VQB Queries”
on page 2-66.

2-61

2 Visual Query Builder

BOOLEAN (MATLAB logical) Data
When you import data of the BOOLEAN type, MATLAB reads the data as a
logical data type within the cell array or structure, having a value of 0
(false) or 1 (true). Similarly, you can export logical data from MATLAB to a
database. This example illustrates both importing and exporting BOOLEAN
data. For more information about the MATLAB logical data type, see
“Logical Types” in the MATLAB Programming documentation.

• “Importing BOOLEAN Data” on page 2-62

• “Exporting BOOLEAN Data” on page 2-65

Importing BOOLEAN Data

1 Set preferences; for this example, set Data return format to cellarray.

2 For the Data operation, choose Select.

3 From Data source, select a data source; for this example, SampleDB.

4 From Tables, select a table; for this example, Products.

5 From Fields, select the fields; for this example, ProductName and
Discontinued.

6 Assign the MATLAB workspace variable; for this example, use D.

7 Click Execute to run the query.

The VQB retrieves a 77-by-2 array.

8 Type D in the Command Window and MATLAB displays 77 records, with
the first five shown here.

D =
'Chai' [0]
'Chang' [0]
'Aniseed Syrup' [0]

[1x28 char] [0]
[1x22 char] [1]

2-62

BOOLEAN (MATLAB logical) Data

9 Compare this to the table in Microsoft Access.

2-63

2 Visual Query Builder

10 In the VQB Data area, double-click D to view the contents in the Array
Editor.

11 In the Array Editor, the logical value for the first product, Chai, appears as
false instead of 0 for the cell array. This is to distinguish it as a logical
value instead of a numeric 0. In the Array Editor, double-click false. Its
logical value, 0, appears in a separate window.

2-64

BOOLEAN (MATLAB logical) Data

Exporting BOOLEAN Data
This example adds two rows of data to the Products table in the Access
Nwind database.

1 In the MATLAB Command Window, create the structure P, which will be
exported, by typing these commands:

P.ProductName{1}='Chocolate Truffles';
P.Discontinued{1}=logical(0);
P.ProductName{2}='Guatemalan Coffee';
P.Discontinued{2}=logical(1);

2 For the Data operation, choose Insert.

3 From Data source, select a data source; for this example, SampleDB.

4 From Tables, select a table; for this example, Products.

5 From Fields, select the fields; for this example, ProductName and
Discontinued.

6 Assign the MATLAB workspace variable; for this example, use P.

7 Click Execute to run the query.

The VQB inserts two new rows into the Products table.

8 View the table in Microsoft Access to ensure the data was correctly inserted.

2-65

2 Visual Query Builder

Generating M-Files from VQB Queries
Use the Visual Query Builder with its graphical interface to easily create a
query. Then select Query > Generate M-File to create a MATLAB M-file
that contains the Database Toolbox functions for that query. You can then
execute the M-file to run the query. You can also edit the M-file to include any
MATLAB or related toolbox functions.

2-66

3

Using Functions in the
Database Toolbox

When first using the toolbox, follow the simple examples in this section
consecutively. Once you are familiar with the process, refer to the example of
interest. To run these examples, you need to set up the specified data source
— for instructions, see “Setting Up a Data Source” on page 1-12. If your
version of Microsoft Access is different from the one used here, you might get
different results. M-files containing functions used in some of these examples
are in matlab/toolbox/database/dbdemos.

Importing Data into MATLAB from
a Database (p. 3-3)

Import data from the SampleDB data
source, including setting the format
for retrieved data.

Viewing Information About the
Imported Data (p. 3-9)

View information retrieved from
the SampleDB data source, such as
number of rows and column names.

Exporting Data from MATLAB to a
New Record in a Database (p. 3-12)

Export a new record from MATLAB
and commit it to the SampleDB data
source.

Replacing Existing Data in a
Database from MATLAB (p. 3-17)

Update an existing record in the
SampleDB data source.

Exporting Multiple New Records
from MATLAB (p. 3-19)

After importing data from the
dbtoolboxdemo data source, export
multiple records to a different table.

Retrieving BINARY or OTHER Java
SQL Data Types (p. 3-24)

Retrieve BINARY or OTHER Java SQL
data types, such as bitmap images
and MAT-files.

3 Using Functions in the Database Toolbox

Accessing Metadata (p. 3-26) Get information about the
dbtoolboxdemo data source.

Performing Driver Functions
(p. 3-33)

Create driver objects and set and get
the properties (does not require you
to set up a data source).

About Objects and Methods for the
Database Toolbox (p. 3-36)

Use object-oriented methods with
the Database Toolbox.

Working with Cell Arrays in
MATLAB (p. 3-39)

Examples for the toolbox, if you are
unfamiliar with cell arrays, used for
mixed data types.

3-2

Importing Data into MATLAB from a Database

Importing Data into MATLAB from a Database
In this example, you connect to and import data from a database. Specifically,
you connect to the SampleDB data source, and then import country data from
the customers table in the Nwind sample database.

Note You can use the Visual Query Builder GUI instead of functions to import
data from a database. See Chapter 2, “Visual Query Builder” for details.

In this section, you learn to use these Database Toolbox functions:

• database

• exec

• fetch

• logintimeout

• ping

• setdbprefs

If you want to see or copy the functions for this example,
or if you want to run the set of functions, use the M-file
matlab\toolbox\database\dbdemos\dbimportdemo.m.

1 If you did not already do so, set up the data source SampleDB according to
the directions in “Setting Up a Data Source” on page 1-12.

2 In MATLAB, set the maximum time, in seconds, you want to allow the
MATLAB session to try to connect to a database. This prevents the
MATLAB session from hanging up if a database connection fails.

3-3

3 Using Functions in the Database Toolbox

Enter the function before you connect to a database.

Type

logintimeout(5)

to specify the maximum allowable connection time as 5 seconds. If you
are using a JDBC connection, the function syntax is different. For more
information, see logintimeout.

MATLAB returns

ans=
5

When you use the database function in the next step to connect to the
database, MATLAB tries to make the connection. If it cannot connect in
5 seconds, it stops trying.

3 Connect to the database by typing

conn = database('SampleDB', '', '')

• In this example, you define a MATLAB variable, conn, to be the returned
connection object. This connection stays open until you close it with
the close function.

• For the database function, you provide the name of the database, which
is the data source SampleDB for this example. The other two arguments
for the database function are username and password. For this example,
they are empty strings because the SampleDB database does not require
a username or password. To see a list of valid ODBC and JDBC data
source names, run getdatasources.

• If you are using a JDBC connection, the database function syntax is
different. For more information, see the database reference page.

3-4

Importing Data into MATLAB from a Database

For a valid connection, MATLAB returns information about the connection
object via a structure.

conn =

Instance: 'SampleDB'

UserName: ''

Driver: []

URL: []

Constructor: [1x1 com.mathworks.toolbox.database.databaseConnect]

Message: []

Handle: [1x1 sun.jdbc.odbc.JdbcOdbcConnection]

TimeOut: 5

AutoCommit: 'on'

Type: 'Database Object'

4 Check the connection status by typing

ping(conn)

MATLAB returns status information about the connection, indicating that
the connection was successful.

DatabaseProductName: 'ACCESS'
DatabaseProductVersion: '04.00.0000'

JDBCDriverName: 'JDBC-ODBC Bridge (odbcjt32.dll)'
JDBCDriverVersion: '2.0001 (04.00.6200)'

MaxDatabaseConnections: 64
CurrentUserName: 'admin'

DatabaseURL: 'jdbc:odbc:SampleDB'
AutoCommitTransactions: 'True'

5 Open a cursor and execute an SQL statement by typing

curs = exec(conn, 'select country from customers')

In the exec function, conn is the name of the connection object. The second
argument, select country from customers, is a valid SQL statement
that selects the country column of data from the customers table.

3-5

3 Using Functions in the Database Toolbox

The exec function returns a cursor object. In this example, you assign the
returned cursor object to the MATLAB variable curs.

curs =

Attributes: []

Data: 0

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select country from customers'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: 0

The data in the cursor object is stored in MATLAB.

If MATLAB displays an error, the query syntax might be invalid. See “Data
Retrieval Restrictions” on page 1-7 for more information.

6 Specify the format of retrieved data by typing

setdbprefs('DataReturnFormat','cellarray')

In this example, the returned data contains strings so the data format
must support strings, which cellarray does. If the returned data contains
only numerics or if the nonnumeric data is not relevant, you could instead
specify the numeric format, which uses less memory.

7 Import data into MATLAB by typing

curs = fetch(curs, 10)

The fetch function imports data. It has the following two arguments in
this example:

• curs, the cursor object returned by exec.

• 10, the maximum number of rows you want to be returned by fetch.
The RowLimit argument is optional. If RowLimit is omitted, MATLAB
imports all remaining rows. When importing large quantities of data,

3-6

Importing Data into MATLAB from a Database

rather than importing all the rows at once, import the data using
multiple fetches with the rowlimit argument to improve speed and
memory usage.

In this example, fetch reassigns the cursor object containing the rows of
data returned by fetch to the variable curs. MATLAB returns information
about the cursor object.

curs =

Attributes: []

Data: {10x1 cell}

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select country from customers'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

The curs object contains an element, Data, that in turn contains the rows of
data in the cell array. You can tell that Data contains 10 rows and 1 column.

8 Display the Data element in the cursor object, curs. Assign the data
element, curs.Data to the variable AA. Type

AA = curs.Data

3-7

3 Using Functions in the Database Toolbox

MATLAB returns

AA =
'Germany'
'Mexico'
'Mexico'
'UK'
'Sweden'
'Germany'
'France'
'Spain'
'France'
'Canada'

Now you can use MATLAB to perform operations on the returned data. For
more information, see “Working with Cell Arrays in MATLAB” on page
3-39. For more about working with strings, see “Characters and Strings”
in the MATLAB Programming documentation.

• To import more rows of data, run the fetch statement from step 7
again and continue importing until all data is retrieved. At that point,
curs.Data contains the string 'No Data'.

• If the returned data includes Java BINARY or OTHER data types, you
might have to process the data before using it. See “Retrieving BINARY
or OTHER Java SQL Data Types” on page 3-24 for instructions to use
this type of data.

9 At this point, you can go to the next example. If you want to stop working
now and resume with the next example at a later time, close the cursor and
the connection. Type

close(curs)
close(conn)

3-8

Viewing Information About the Imported Data

Viewing Information About the Imported Data
In this example, you view information about the data you imported and close
the connection. You learn to use these Database Toolbox functions:

• attr

• close

• cols

• columnnames

• rows

• width

If you want to see or copy the functions for this example,
or if you want to run the set of functions, use the M-file
matlab\toolbox\database\dbdemos\dbinfodemo.m.

1 If you are continuing directly from the previous example (“Importing Data
into MATLAB from a Database” on page 3-3), skip this step. Otherwise,
if the cursor and connection are not open, type the following to continue
with this example.

conn = database('SampleDB', '', '');
curs = exec(conn, 'select country from customers');
setdbprefs('DataReturnFormat','cellarray');
curs = fetch(curs, 10);

2 View the number of rows in the data set you imported by typing

numrows = rows(curs)

MATLAB returns

numrows =
10

rows returns the number of rows in the data set, which is 10 in this
example.

3-9

3 Using Functions in the Database Toolbox

3 View the number of columns in the data set by typing

numcols = cols(curs)

MATLAB returns

numcols =
1

cols returns the number of columns in the data set, which is one in this
example.

4 View the column names for the columns in the data set by typing

colnames = columnnames(curs)

MATLAB returns

colnames =
'country'

columnnames returns the names of the columns in the data set. This
example has only one column and, therefore, only one column name,
'country', is returned.

5 View the width of the column (size of field) in the data set by typing

colsize = width(curs, 1)

MATLAB returns

colsize =
15

width returns the column width for the column number you specify. Here,
the width of column 1 is 15.

6 You can use a single function to view multiple attributes for a column
by typing

attributes = attr(curs)

3-10

Viewing Information About the Imported Data

MATLAB returns

attributes =
fieldName: 'country'
typeName: 'VARCHAR'

typeValue: 12
columnWidth: 15

precision: []
scale: []

currency: 'false'
readOnly: 'false'
nullable: 'true'
Message: []

Note that if you had imported multiple columns, you could include a colnum
argument with attr to specify the number of the column for which you
want the information.

7 Close the cursor by typing

close(curs)

Always close a cursor when you are finished with it to avoid using memory
unnecessarily and to ensure there are enough available cursors for other
users.

8 At this point, you can go to the next example. If you want to stop working
now and resume with the next example at a later time, close the connection.
Type

close(conn)

3-11

3 Using Functions in the Database Toolbox

Exporting Data from MATLAB to a New Record in a
Database

In this example, you retrieve a set of data, perform a simple calculation on
the data using MATLAB, and export the results as a new record to another
table in the database. Specifically, you retrieve freight costs from an orders
table, calculate the average freight cost, and put the data into a cell array to
export it. Then you export the data (the average freight cost and the date the
calculation was made) to an empty table.

If you want to see or copy the functions for this example,
or if you want to run the set of functions, use the M-file
matlab\toolbox\database\dbdemos\dbinsertdemo.m.

Note You can use the Visual Query Builder GUI instead of functions to
export data from MATLAB to new rows in a database. See Chapter 2, “Visual
Query Builder” for details.

You learn to use these Database Toolbox functions:

• get

• fastinsert

• setdbprefs

1 If you are continuing from the previous example (“Viewing Information
About the Imported Data” on page 3-9), skip this step. Otherwise, connect
to the data source, SampleDB. Type

conn = database('SampleDB', '', '');

2 In MATLAB, set the format for retrieved data to numeric by typing

setdbprefs('DataReturnFormat','numeric')

In this example, the returned data will contain only a column of numbers
so the data format can be numeric, which is needed to perform calculations
on the data.

3-12

Exporting Data from MATLAB to a New Record in a Database

3 Import the data on which you want to perform calculations. Specifically,
import the freight column of data from the orders table. To keep the
example simple, import only three rows of data. Type

curs = exec(conn, 'select freight from orders');
curs = fetch(curs, 3);

4 View the data you imported by typing

AA = curs.Data

MATLAB returns

AA =
32.3800
11.6100
65.8300

5 Calculate the average freight cost. First, assign the number of rows in the
array to the variable numrows. Then calculate the average, assigning the
result to the variable meanA. Type

numrows = rows(curs);
meanA = sum(AA(:))/numrows

MATLAB returns

meanA =
36.6067

6 Assign the date on which this calculation was made to the variable D by
typing

D = '20-Jan-2002';

For more information about working with strings in MATLAB, see
“Characters and Strings” in the MATLAB Programming documentation.

7 Assign the date and mean to a cell array, which you will export to the
database. A cell array or structure is required because the date information
is a string. Unlike importing data, you do not specify the export format

3-13

3 Using Functions in the Database Toolbox

using setdbprefs, but instead use standard MATLAB operations to define
it. Put the date in the first cell by typing

exdata(1,1) = {D}

MATLAB returns

exdata =
'20-Jan-2002'

Put the mean in the second cell by typing

exdata(1,2) = {meanA}

MATLAB returns

exdata =
'20-Jan-2002' [36.6067]

8 Define the names of the columns to which you will be exporting data. In
this example, the column names are those in the Avg_Freight_Cost table
you created earlier in “SampleDB Data Source” on page 1-13 — Calc_Date
and Avg_Cost. Assign the cell array containing the column names to the
variable colnames. Type

colnames = {'Calc_Date','Avg_Cost'};

9 Before you export data from MATLAB, determine the current status of
the AutoCommit flag for the database. The status of the AutoCommit flag
determines if the database data will be automatically committed or not. If
the flag is off, you can undo an update.

Verify the status of the AutoCommit flag using the get function by typing

get(conn, 'AutoCommit')

MATLAB returns

ans =
on

3-14

Exporting Data from MATLAB to a New Record in a Database

The AutoCommit flag is set to on so exported data will be automatically
committed. In this example, keep the AutoCommit flag on; for a Microsoft
Access database, this is the only option.

10 Export the data into the Avg_Freight_Cost table. For this example, type

fastinsert(conn, 'Avg_Freight_Cost', colnames, exdata)

where conn is the connection object for the database to which you are
exporting data. In this example, conn is SampleDB, which is already
open. However, if you export to a different database that is not open,
use the database function to connect to it before exporting the data.
Avg_Freight_Cost is the name of the table to which you are exporting
data. In the fastinsert function, you also include the colnames cell array
and the cell array containing the data you are exporting, exdata, both of
which you defined in the previous steps. Note that you do not define the
type of data you are exporting; the data is exported in its current MATLAB
format. Running fastinsert appends the data as a new record at the
end of the Avg_Freight_Cost table.

If you get an error, it may be because the table is open in design mode in
Access (edit mode for other databases). Close the table in Access and repeat
the fastinsert function. For example, the error might be

[Vendor][ODBC Product Driver] The database engine could not
lock table 'TableName' because it is already in use by
another person or process.

If you have other problems using fastinsert, try using insert instead.

11 In Microsoft Access, view the Avg_Freight_Cost table to verify the results.

Note that the Avg_Cost value was rounded to a whole number to match
the properties of that field in Access.

3-15

3 Using Functions in the Database Toolbox

12 Close the cursor by typing

close(curs)

Always close a cursor when you are finished with it to avoid using memory
unnecessarily and to ensure there are enough available cursors for other
users.

13 At this point, you can go to the next example. If you want to stop working
now and resume with the next example at a later time, close the connection.
Type

close(conn)

Do not delete or change the Avg_Freight_Cost table in Access because
you will use it in the next example.

3-16

Replacing Existing Data in a Database from MATLAB

Replacing Existing Data in a Database from MATLAB
In this example, you update existing data in the database with exported data
from MATLAB. Specifically, you update the date you previously imported into
the Avg_Freight_Cost table.

You learn to use these Database Toolbox functions:

• close

• update

If you want to see or copy the functions for this example, or
if you want to run a similar set of functions, use the M-file
matlab\toolbox\database\dbdemos\dbupdatedemo.m.

1 If you are continuing directly from the previous example (“Exporting Data
from MATLAB to a New Record in a Database” on page 3-12), skip this
step. Otherwise, type

conn = database('SampleDB', '', '');
colnames = {'Calc_Date', 'Avg_Cost'};
D = '20-Jan-2002';
meanA = 36.6067;
exdata = {D, meanA}

MATLAB returns

exdata =
'20-Jan-2002' [36.6067]

2 Assume that the date in the Avg_Freight_Cost table is incorrect and
instead should be 19-Jan-2002. Type

D = '19-Jan-2002'

3 Assign the new date value to the cell array, newdata, which contains the
data you will export. Type

newdata(1,1) = {D}

3-17

3 Using Functions in the Database Toolbox

MATLAB returns

newdata =
'19-Jan-2002'

4 Identify the record to be updated in the database. To do so, define an SQL
where statement and assign it to the variable whereclause. The record to
be updated is the record that has 20-Jan-2002 for the Calc_Date.

whereclause = 'where Calc_Date = ''20-Jan-2002'''

Because the date string is within a string, two single quotation marks
surround the date instead of just a single quotation mark. MATLAB returns

whereclause =
where Calc_Date = '20-Jan-2002'

For more information about working with strings in MATLAB, see
“Characters and Strings” in the MATLAB Programming documentation.

5 Export the data, replacing the record whose Calc_Date is 20-Jan-2002.

update(conn,'Avg_Freight_Cost',colnames,newdata,whereclause)

6 In Microsoft Access, view the Avg_Freight_Cost table to verify the results.

7 Close the cursor and disconnect from the database.

close(curs)
close(conn)

Always close a connection when you are finished with it to avoid
using memory unnecessarily and to ensure there are enough available
connections for other users.

3-18

Exporting Multiple New Records from MATLAB

Exporting Multiple New Records from MATLAB
In this example, you import multiple records, manipulate the data in
MATLAB, and Then you export it to a different table in the database.
Specifically, you import sales figures for all products, by month, into MATLAB.
Then you compute the total sales for each month. Finally, you export the
monthly totals to a new table.

You learn to use these Database Toolbox functions:

• fastinsert

• setdbprefs

If you want to see or copy the functions for this example, or
if you want to run a similar set of functions, use the M-file
matlab\toolbox\database\dbdemos\dbinsert2demo.m.

1 If you did not already do so, set up the data source dbtoolboxdemo
according to the directions in “Setting Up a Data Source” on page 1-12.
This data source uses the tutorial database.

2 Check the properties of the tutorial database to be sure it is writable,
that is, not read only.

3 Connect to the database by typing

conn = database('dbtoolboxdemo', '', '');

You define the returned connection object as conn. You do not need a
username or password to access the dbtoolboxdemo database.

4 Specify preferences for the retrieved data by using the setdbprefs
function. Set the data return format to numeric and specify that any NULL
value read from the database is to be converted to a 0 in MATLAB.

setdbprefs...
({'NullNumberRead';'DataReturnFormat'},{'0';'numeric'})

3-19

3 Using Functions in the Database Toolbox

Note that when you specify DataReturnFormat as numeric, the value for
NullNumberRead must also be numeric, such as 0. For example, it cannot
be a string, such as NaN.

5 Import the sales figures. Specifically, import all data from the salesVolume
table. Type

curs = exec(conn, 'select * from salesVolume');
curs = fetch(curs);

6 To get a sense of the data you imported, view the column names in the
fetched data set. Type

columnnames(curs)

MATLAB returns

ans =
'StockNumber', 'January', 'February', 'March', 'April',
'May', 'June', 'July', 'August', 'September', 'October',
'November', 'December'

7 To get a sense of what the data is, view the data for January, which is in
column 2. Type

curs.Data(:,2)

MATLAB returns

ans =
1400
2400
1800
3000
4300
5000
1200
3000
3000

0

3-20

Exporting Multiple New Records from MATLAB

8 Get the size of the matrix containing the fetched data set, assigning the
dimensions to m and n. In a later step, you use these values to compute the
monthly totals. Type

[m,n] = size(curs.Data)

MATLAB returns

m =
10

n =
13

9 Compute the monthly totals by typing

for c = 2:n
tmp = curs.Data(:,c);
monthly(c-1,1) = sum(tmp(:));

end

where tmp is the sales volume for all products in a given month c, and
monthly is the total sales volume of all products for the month c.

For example, when c is 2, row 1 of monthly is the total of all rows in column
2 of curs.Data, where column 2 is the sales volume for January.

To see the result, type

monthly

3-21

3 Using Functions in the Database Toolbox

MATLAB returns

25100
15621
14606
11944
9965
8643
6525
5899
8632

13170
48345

172000

10 Create a string array containing the column names into which you are
inserting the data. In a later step, we insert the data into the salesTotal
column of the yearlySales table. The yearlySales table contains no data.
Here we assign the array to the variable colnames. Type

colnames{1,1} = 'salesTotal';

11 Insert the data into the yearlySales table by typing

fastinsert(conn, 'yearlySales', colnames, monthly)

Be sure the database properties are not read only or archive.

12 View the yearlySales table in the tutorial database to be sure the data
was imported correctly.

3-22

Exporting Multiple New Records from MATLAB

13 Close the cursor and database connection. Type

close(curs)
close(conn)

3-23

3 Using Functions in the Database Toolbox

Retrieving BINARY or OTHER Java SQL Data Types
You can retrieve BINARY or OTHER Java SQL data types, however, the data
might require additional processing once retrieved. For example, you can
retrieve data from a MAT-file or an image file. MATLAB cannot process these
data types directly. You need knowledge of the content and might need to
massage the data in order to work with it in MATLAB, such as stripping off
leading entries added by your driver during data retrieval.

In this example, you import data that includes bitmap images. You use a
sample M-file included with the Database Toolbox in the vqb directory:

• parsebinary

Perform these steps to retrieve bitmap image data for the example:

1 Connect to the data source, SampleDB. Type

conn = database('SampleDB', '', '');

2 For the data return format preference, specify either cellarray or
structure. For this example, set it to cellarray by typing

setdbprefs('DataReturnFormat','cellarray');

3 Import the data, which includes bitmap image files. For the example,
import the EmployeeID and Photo columns of data from the Employees
table. Type

curs = exec(conn, 'select EmployeeID,Photo from Employees')
curs = fetch(curs);

4 View the data you imported by typing

curs.Data

3-24

Retrieving BINARY or OTHER Java SQL Data Types

MATLAB returns

ans =

[1] [21626x1 B[]]
[2] [21626x1 B[]]
[3] [21722x1 B[]]
[4] [21626x1 B[]]
[5] [21626x1 B[]]
[6] [21626x1 B[]]
[7] [21626x1 B[]]
[8] [21626x1 B[]]
[9] [21626x1 B[]]

The data in column 2 of the imported data, [21626x1 B[]], indicates that
the data type is BINARY.

Some of the OTHER data type fields might be empty. This happens when
Java cannot pass the data through the JDBC/ODBC bridge, for example.

5 Assign the image element you want to the variable photo. Type

photo = curs.Data{1,2};

6 Run the sample program,
matlabroot/toolbox/database/vqb/parsebinary.m, which displays
photo as a bitmap image.

parsebinary(photo, 'BMP')

The bitmap image displays in a figure window. The parsebinary M-file
writes the retrieved data to a file, strips ODBC header information, and
displays a bitmap image. For more details, type help parsebinary or
view the parsebinary M-file in the MATLAB Editor/Debugger by typing
open parsebinary.

This is just one example of retrieving a BINARY or OTHER object. Your
application might require different manipulations to process the data in
MATLAB.

3-25

3 Using Functions in the Database Toolbox

Accessing Metadata
In this example, you access information about the database, which is called
the metadata. You use these Database Toolbox functions:

• dmd

• get

• supports

• tables

1 Connect to the dbtoolboxdemo data source. Type

conn = database('dbtoolboxdemo', '', '')

MATLAB returns information about the database object.

conn =

Instance: 'dbtoolboxdemo'

UserName: ''

Driver: []

URL: []

Constructor: [1x1 com.mathworks.toolbox.database.databaseConnect]

Message: []

Handle: [1x1 sun.jdbc.odbc.JdbcOdbcConnection]

TimeOut: 0

AutoCommit: 'on'

Type: 'Database Object'

2 To view additional information about the database, you first construct a
database metadata object using the dmd function. Type

dbmeta = dmd(conn)

MATLAB returns the handle (identifier) for the metadata object.

dbmeta = DMDHandle: [1x1 sun.jdbc.odbc.JdbcOdbcDatabaseMetaData]

3 To view a list of properties associated with the database, use the get
function for the metadata object you just created, dbmeta.

3-26

Accessing Metadata

v = get(dbmeta)

MATLAB returns a long list of properties associated with the database.

v =

AllProceduresAreCallable: 1

AllTablesAreSelectable: 1

DataDefinitionCausesTransactionCommit: 1

DataDefinitionIgnoredInTransactions: 0

DoesMaxRowSizeIncludeBlobs: 0

Catalogs: {4x1 cell}

CatalogSeparator: '.'

CatalogTerm: 'DATABASE'

DatabaseProductName: 'ACCESS'

DatabaseProductVersion: '04.00.0000'

DefaultTransactionIsolation: 2

DriverMajorVersion: 2

DriverMinorVersion: 1

DriverName: [1x31 char]

DriverVersion: '2.0001 (04.00.6200)'

ExtraNameCharacters: [1x29 char]

IdentifierQuoteString: '`'

IsCatalogAtStart: 1

MaxBinaryLiteralLength: 255

MaxCatalogNameLength: 260

MaxCharLiteralLength: 255

MaxColumnNameLength: 64

MaxColumnsInGroupBy: 10

MaxColumnsInIndex: 10

MaxColumnsInOrderBy: 10

MaxColumnsInSelect: 255

MaxColumnsInTable: 255

MaxConnections: 64

MaxCursorNameLength: 64

MaxIndexLength: 255

MaxProcedureNameLength: 64

MaxRowSize: 4052

MaxSchemaNameLength: 0

MaxStatementLength: 65000

MaxStatements: 0

3-27

3 Using Functions in the Database Toolbox

MaxTableNameLength: 64

MaxTablesInSelect: 16

MaxUserNameLength: 0

NumericFunctions: [1x73 char]

ProcedureTerm: 'QUERY'

Schemas: {}

SchemaTerm: ''

SearchStringEscape: '\'

SQLKeywords: [1x461 char]

StringFunctions: [1x91 char]

StoresLowerCaseIdentifiers: 0

StoresLowerCaseQuotedIdentifiers: 0

StoresMixedCaseIdentifiers: 0

StoresMixedCaseQuotedIdentifiers: 1

StoresUpperCaseIdentifiers: 0

StoresUpperCaseQuotedIdentifiers: 0

SystemFunctions: ''

TableTypes: {13x1 cell}

TimeDateFunctions: [1x111 char]

TypeInfo: {16x1 cell}

URL: 'jdbc:odbc:dbtoolboxdemo'

UserName: 'admin'

NullPlusNonNullIsNull: 0

NullsAreSortedAtEnd: 0

NullsAreSortedAtStart: 0

NullsAreSortedHigh: 0

NullsAreSortedLow: 1

UsesLocalFilePerTable: 0

UsesLocalFiles: 1

3-28

Accessing Metadata

4 Some information is too long to fit in the field’s display area and instead the
size of the information in the field is reported. For example, the Catalogs
element is shown as a {4x1 cell}. To view the actual Catalog information,
type

v.Catalogs

MATLAB returns

ans =
'D:\Work\databasetoolboxfiles\Nwind'
'D:\Work\databasetoolboxfiles\Nwind_orig'
'D:\Work\databasetoolboxfiles\tutorial'
'D:\Work\databasetoolboxfiles\tutorial_copy'

For more information about the database metadata properties returned by
get, see the methods of the DatabaseMetaData object at the Java Web site.

5 To see the properties that this database supports, use the supports
function. Type

a = supports(dbmeta)

MATLAB returns

a =
AlterTableWithAddColumn: 1

AlterTableWithDropColumn: 1
ANSI92EntryLevelSQL: 1

ANSI92FullSQL: 0
ANSI92IntermediateSQL: 0

CatalogsInDataManipulation: 1
CatalogsInIndexDefinitions: 1

CatalogsInPrivilegeDefinitions: 0
CatalogsInProcedureCalls: 0

CatalogsInTableDefinitions: 1
ColumnAliasing: 1

Convert: 1
CoreSQLGrammar: 0

CorrelatedSubqueries: 1
DataDefinitionAndDataManipulationTransactions: 1

3-29

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

3 Using Functions in the Database Toolbox

DataManipulationTransactionsOnly: 0
DifferentTableCorrelationNames: 0

ExpressionsInOrderBy: 1
ExtendedSQLGrammar: 0

FullOuterJoins: 0
GroupBy: 1

GroupByBeyondSelect: 1
GroupByUnrelated: 0

IntegrityEnhancementFacility: 0
LikeEscapeClause: 0

LimitedOuterJoins: 0
MinimumSQLGrammar: 1

MixedCaseIdentifiers: 1
MixedCaseQuotedIdentifiers: 0

MultipleResultSets: 0
MultipleTransactions: 1

NonNullableColumns: 0
OpenCursorsAcrossCommit: 0

OpenCursorsAcrossRollback: 0
OpenStatementsAcrossCommit: 1

OpenStatementsAcrossRollback: 1
OrderByUnrelated: 0

OuterJoins: 1
PositionedDelete: 0
PositionedUpdate: 0

SchemasInDataManipulation: 0
SchemasInIndexDefinitions: 0

SchemasInPrivilegeDefinitions: 0
SchemasInProcedureCalls: 0

SchemasInTableDefinitions: 0
SelectForUpdate: 0

StoredProcedures: 1
SubqueriesInComparisons: 1

SubqueriesInExists: 1
SubqueriesInIns: 1

SubqueriesInQuantifieds: 1
TableCorrelationNames: 1

Transactions: 1
Union: 1

UnionAll: 1

3-30

Accessing Metadata

A 1 means the database supports that property, while a 0 means the
database does not support that property. For the above example, the
GroupBy property has a value of 1, meaning the database supports the
SQL group by feature.

For more information about the properties supported by the database, see
the methods of the DatabaseMetaData object at the Java Web site.

6 There are other Database Toolbox functions you can use to access additional
database metadata. For example, to retrieve the names of the tables in a
catalog in the database, use the tables function. Type

t = tables(dbmeta, 'tutorial')

where dbmeta is the name of the database metadata object you created for
the database using dmd in step 2, and tutorial is the name of the catalog
for which you want to retrieve table names. (You retrieved catalog names
in step 4.)

MATLAB returns the names and types for each table.

t =
'MSysAccessObjects' 'SYSTEM TABLE'
'MSysIMEXColumns' 'SYSTEM TABLE'
'MSysIMEXSpecs' 'SYSTEM TABLE'
'MSysObjects' 'SYSTEM TABLE'
'MSysQueries' 'SYSTEM TABLE'
'MSysRelationships' 'SYSTEM TABLE'
'inventoryTable' 'TABLE'
'productTable' 'TABLE'
'salesVolume' 'TABLE'
'suppliers' 'TABLE'
'yearlySales' 'TABLE'
'display' 'VIEW'

Two of these tables were used in a previous example: salesVolume and
yearlySales.

For a list of all of the database metadata functions, see “Database Metadata
Object” on page 4-4. Some databases do not support all of these functions.

3-31

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

3 Using Functions in the Database Toolbox

7 Close the database connection. Type

close(conn)

Resultset Metadata Object
Similar to the dmd function are the resultset and rsmd functions. Use
resultset to create a resultset object for a cursor object that you created
using exec or fetch. You can then view properties of the resultset object using
get, create a resultset metadata object using rsmd and get its properties, or
make calls to the resultset object using your own Java-based applications. For
more information, see the reference pages for resultset and rsmd, or see
the lists of related functions, “Resultset Object” on page 4-6 and “Resultset
Metadata Object” on page 4-6.

3-32

Performing Driver Functions

Performing Driver Functions
This example demonstrates how to create database driver and drivermanager
objects so that you can get and set the object properties. You use these
Database Toolbox functions:

• drivermanager

• driver

• get

• isdriver

• set

Note There is no equivalent M-file demo to run because the example relies
on a specific system-to-JDBC connection and database. Your configuration
will be different from the one in this example, so you cannot run these
examples exactly as written. Instead, use values for your own system. See
your database administrator for address information.

1 Connect to the database.

c = database('orc1','scott','tiger',...
'oracle.jdbc.driver.OracleDriver',...
'jdbc:oracle:thin:@144.212.123.24:1822:');

2 Use the driver function to construct a driver object for a specified database
URL string of the form jdbc:subprotocol:subname. For example, type

d = driver('jdbc:oracle:thin:@144.212.123.24:1822:')

MATLAB returns the handle (identifier) for the driver object.

d =
DriverHandle: [1x1 oracle.jdbc.driver.OracleDriver]

3 To get properties of the driver object, type

v = get(d)

3-33

3 Using Functions in the Database Toolbox

MATLAB returns information about the driver’s versions.

v =
MajorVersion: 1
MinorVersion: 0

4 To determine if d is a valid JDBC driver object, type

isdriver(d)

MATLAB returns

ans =
1

which means d is a valid JDBC driver object. Otherwise, MATLAB would
have returned a 0.

5 To set and get properties for all drivers, first create a drivermanager object
using the drivermanager function. Type

dm = drivermanager

dm is the drivermanager object.

6 Get properties of the drivermanager object. Type

v = get(dm)

MATLAB returns

v =

Drivers: {'sun.jdbc.odbc.JdbcOdbcDriver@761630' [1x38 char]}

LoginTimeout: 0

LogStream: []

7 To set the LoginTimeout value to 10 for all drivers loaded during this
session, type

set(dm,'LoginTimeout',10)

3-34

Performing Driver Functions

Verify the value by typing

v = get(dm)

MATLAB returns

v =
Drivers: {'sun.jdbc.odbc.JdbcOdbcDriver@761630'}

LoginTimeout: 10
LogStream: []

The next time you connect to a database, the LoginTimeout value will be
10. For example, type

conn = database('SampleDB','','');
logintimeout

MATLAB returns

ans =
10

For a list of all the driver object functions, see “Driver Object” on page 4-5 and
“Drivermanager Object” on page 4-6.

3-35

3 Using Functions in the Database Toolbox

About Objects and Methods for the Database Toolbox
The Database Toolbox is an object-oriented application. The toolbox has the
following objects:

• Cursor

• Database

• Database metadata

• Driver

• Drivermanager

• Resultset

• Resultset metadata

Each object has its own method directory, which begins with an @ sign, in
the matlabroot/toolbox/database/database directory. The methods for
operating on a given object are the M-file functions in the object’s directory.

You can use the Database Toolbox with no knowledge of or interest in its
object-oriented implementation. But for those who are interested, some of its
useful aspects follow:

• You use constructor functions to create objects, such as running the fetch
function to create a cursor object containing query results. MATLAB
returns not only the object but also the stored information about the
object. Because objects are structures in MATLAB, you can easily view
the elements of the returned object.

3-36

About Objects and Methods for the Database Toolbox

As an example, if you create a cursor object curs using the fetch function,
MATLAB returns

curs =

Attributes: []

Data: {10x1 cell}

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select country from customers'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

You can easily access information about the cursor object, including the
results, which are in the Data element of the cursor object. To view the
contents of the element, which is a 10-by-1 cell array in this example, you
type

curs.Data

MATLAB returns

ans =
'Germany'
'Mexico'
'Mexico'
'UK'
'Sweden'
'Germany'
'France'
'Spain'
'France'

• Objects allow the use of overloaded functions. For example, to view
properties of objects in the Database Toolbox, you use the get function,
regardless of the object. This means you have to remember only one
function, get, rather than having to remember specific functions for each

3-37

3 Using Functions in the Database Toolbox

object. The properties you retrieve with get differ, depending on the object,
but the function itself always has the same name and argument syntax.

• You can write your own methods, as M-files, to operate on the objects in the
Database Toolbox. For more information, see “Classes and Objects” in the
MATLAB documentation.

3-38

Working with Cell Arrays in MATLAB

Working with Cell Arrays in MATLAB
When you import data from a database into MATLAB, the data is stored as a
numeric matrix, a structure, or a MATLAB cell array, depending on the data
return format preference you specified using setdbprefs or the Database
Toolbox Preferences dialog box.

Once the data is in MATLAB, you can use MATLAB functions to work with it.
Because some users are unfamiliar with cell arrays, this section provides a
few simple examples of how to work with the cell array data type in MATLAB:

• “Viewing Cell Array Data Returned from a Query” on page 3-39

• “Viewing Elements of Cell Array Data” on page 3-42

• “Performing Functions on Cell Array Data” on page 3-44

• “Creating Cell Arrays for Exporting Data from MATLAB” on page 3-44

For more information on using cell arrays, see “Cell Arrays” in the MATLAB
Programming documentation.

You can use structures instead of cell arrays. For more information, see
“Structures” in the MATLAB Programming documentation.

You also might also need more information about working with strings in
MATLAB. See the functions char, cellstr, and strvcat and “Characters and
Strings” in the MATLAB Programming documentation.

Viewing Cell Array Data Returned from a Query

Viewing Query Results
How you view query results depends on if you import the data using the fetch
function or if you use the Visual Query Builder.

3-39

3 Using Functions in the Database Toolbox

Using the fetch Function. If you import data using the fetch function,
MATLAB returns data to a cursor object, as in the following data, which was
imported in the example “Exporting Data from MATLAB to a New Record
in a Database” on page 3-12.

curs =

Attributes: []

Data: [3x1 double]

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select freight from orders'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

The retrieved data is in the field Data. To view it, type

curs.Data

Alternatively, you can assign the data to a variable, for example, A, by typing

A = curs.Data

and then view it by typing A.

Using the Visual Query Builder. If you import data using the Visual Query
Builder, you assign the results to the workspace variable, which is A in this
example, using the VQB. To see the data, type the workspace variable name
at the MATLAB prompt in the Command Window, for example, type A.

MATLAB displays the data in the Command Window, for example

A =
32.3800
11.6100
65.8300

3-40

Working with Cell Arrays in MATLAB

Viewing Results with Multiple Columns
If the query results consist of multiple columns, you can view all the results
for a single column using a colon (:). See the example in “Exporting Multiple
New Records from MATLAB” on page 3-19. For example, you view the results
of column 2 by typing

A(:,2)

or if you used fetch, you can also view it by typing

curs.Data(:,2)

MATLAB returns the data in column 2, for example

ans =
1400
2400
1800
3000
4300
5000
1200
3000
3000

0

Expanding Results
If the results do not fit in the display space available, MATLAB displays size
information only. If, for example, MATLAB returns these query results.

B =
[1] 'Beverages' [1x43 char]
[2] 'Condiments' [1x58 char]
[3] 'Confections' [1x35 char]

You can see the data in columns 1 and 2, but the third is expressed as an
array because the results are too long to display.

3-41

3 Using Functions in the Database Toolbox

To view the contents of the third column in the first row, type

B{1,3}

or if you used fetch, you can also view it by typing

curs.Data{1,3}

MATLAB returns

ans =
Soft drinks, coffees, teas, beers, and ales

Viewing Elements of Cell Array Data
In these examples, the curs.Data notation is not used and instead the
examples assume you assigned curs.Data to a variable. If you do not assign
curs.Data to a variable, then just substitute curs.Data for the variable
name in the examples.

This example is the same as that in “Exporting Data from MATLAB to a
New Record in a Database” on page 3-12, but the DataReturnFormat is set to
cellarray.

A =
[32.3800]
[11.6100]
[65.8300]

Viewing a Single Element as a Numeric Value
To view the first element of A, type

A(1,1)

MATLAB returns

ans =
[32.3800]

3-42

Working with Cell Arrays in MATLAB

The brackets indicate that the result is not numeric but instead is an element
in a cell array. You cannot perform numeric operations on cell array data.

To use the first element as a numeric value, enclose it in curly braces. For
example, type

A{1,1}

MATLAB returns

ans =
32.3800

This result is numeric and, therefore, you can perform numeric operations
on it.

Viewing an Entire Column or Row as a Numeric Vector
To use the data in an entire column or row of a cell array as a numeric vector,
use colons within the curly braces. You then assign the results to a matrix
by enclosing them in square brackets. For example, to use all the data in
column 1, type

AA=[A{:,1}]'

MATLAB returns

AA =
32.3800
11.6100
65.8300

You can also use the contents with the celldisp function. For example, type

celldisp(A)

3-43

3 Using Functions in the Database Toolbox

MATLAB returns

A{1} =
32.3800

A{2} =
11.6100

A{3} =
65.8300

Performing Functions on Cell Array Data
To perform certain MATLAB functions directly on cell arrays, you need to
operate on the contents of the cell array as numeric data.

For example, to compute the sum of the elements in the cell array A, type

sum([A{:}])

MATLAB returns

ans =
109.8200

Creating Cell Arrays for Exporting Data from MATLAB
If you use the fastinsert and update functions to export data from MATLAB
to a database and need to include data in a cell array, such as column names,
use the following techniques.

Enclosing Data in Curly Braces
One way to put data in a cell array is by enclosing the data in curly braces,
with rows separated by semicolons, and elements within a row separated
by commas.

For example, to identify the column names in a fastinsert function, use
curly braces as follows.

fastinsert(conn, 'Growth', {'Date','Average'}, insertdata)

3-44

Working with Cell Arrays in MATLAB

You can also insert the data itself using curly braces. For example, to insert A
and avgA, and B and avgB, into the Date and Average columns of the Growth
table, use the fastinsert function as follows.

fastinsert(conn,'Growth',{'Date','Average'},{A, avgA;B,avgB})

Assigning Cell Array Elements
To put data into a cell array element, enclose it in curly braces. For example,
if you have one row containing two values you want to export, A and meanA,
put them in cell array exdata, which you will export. Type

exdata(1,1) = {A};
exdata(1,2) = {meanA};

Alternatively, you can assign values to exdata in one step by typing

exdata = {A,meanA}

To export the data exdata, use the fastinsert function as follows.

fastinsert(conn, 'Growth', colnames, exdata)

Converting a Numeric Matrix to a Cell Array
If you want to export data containing numeric and string values, you need to
export it as a cell array or structure. As an example, you will export a cell
array, exdata, whose first column already contains the names of the twelve
months. You have calculated the total sales figures for each month and the
results are in the numeric matrix monthly. To assign the values in monthly
to the second column of the cell array exdata, convert the numeric matrix
monthly to a cell array exdata using the num2cell. Type

exdata(:,2) = num2cell(monthly);

num2cell takes the data in monthly and assigns each row to the second
column in the cell array, exdata.

3-45

3 Using Functions in the Database Toolbox

3-46

4

Functions — By Category

General (p. 4-2) Preferences and settings for login
time, retrieval format, and more

Database Connection (p. 4-2) Create, test, close, and set
parameters for database connection

SQL Cursor (p. 4-3) Set parameters for and execute
query

Importing Data into MATLAB from
a Database (p. 4-3)

Import data from database to
MATLAB and get information about
imported data

Database Metadata Object (p. 4-4) Information about the database data

Exporting Data from MATLAB to a
Database (p. 4-5)

Export data from MATLAB to
database

Driver Object (p. 4-5) Construct and get information about
database driver

Drivermanager Object (p. 4-6) Construct and get information about
database drivermanager

Resultset Object (p. 4-6) Construct and get information about
resultset

Resultset Metadata Object (p. 4-6) Construct and get information about
resultset metadata

Visual Query Builder (p. 4-7) Start query builder GUI and
configure JDBC data source for it

4 Functions — By Category

General
logintimeout Set or get time allowed to establish

database connection

setdbprefs Set preferences for retrieval format,
errors, NULLs, and JDBC MAT-file
location

Database Connection
close Close database connection, cursor, or

resultset object

database Connect to database

get Object properties

getdatasources Names of valid ODBC and JDBC
data sources on system

isconnection Detect whether database connection
is valid

isreadonly Detect whether database connection
is read only

ping Status information about database
connection

set Set properties for database, cursor,
or drivermanager object

setdbprefs Set preferences for retrieval format,
errors, NULLs, and JDBC MAT-file
location

sql2native Convert JDBC SQL grammar to
system’s native SQL grammar

4-2

SQL Cursor

SQL Cursor
close Close database connection, cursor, or

resultset object

exec Execute SQL statement and open
cursor

get Object properties

querytimeout Time allowed for database SQL
query to succeed

set Set properties for database, cursor,
or drivermanager object

Importing Data into MATLAB from a Database
attr Attributes of columns in fetched data

set

cols Number of columns in fetched data
set

columnnames Names of columns in fetched data set

fetch Import data into MATLAB

querybuilder Start SQL query builder GUI to
import and export data

rows Number of rows in fetched data set

width Field size of column in fetched data
set

4-3

4 Functions — By Category

Database Metadata Object
bestrowid Database table unique row identifier

columnprivileges Database column privileges

columns Database table column names

crossreference Information about primary and
foreign keys

dmd Construct database metadata object

exportedkeys Information about exported foreign
keys

get Object properties

importedkeys Information about imported foreign
keys

indexinfo Indices and statistics for database
table

primarykeys Primary key information for
database table or schema

procedurecolumns Catalog’s stored procedure
parameters and result columns

procedures Catalog’s stored procedures

supports Detect whether property is supported
by database metadata object

tableprivileges Database table privileges

tables Database table names

versioncolumns Automatically updated table
columns

4-4

Exporting Data from MATLAB to a Database

Exporting Data from MATLAB to a Database
commit Make database changes permanent

insert Add MATLAB data to database
table (deprecated; use fastinsert
instead)

querybuilder Start SQL query builder GUI to
import and export data

rollback Undo database changes

update Replace data in database table with
data from MATLAB

Driver Object
driver Construct database driver object

get Object properties

isdriver Detect whether driver is valid JDBC
driver object

isjdbc Detect whether driver is JDBC
compliant

isurl Detect whether database URL is
valid

register Load database driver

unregister Unload database driver

4-5

4 Functions — By Category

Drivermanager Object
drivermanager Construct database drivermanager

object

get Object properties

set Set properties for database, cursor,
or drivermanager object

Resultset Object
clearwarnings Clear warnings for database

connection or resultset

close Close database connection, cursor, or
resultset object

get Object properties

isnullcolumn Detect whether last record read in
resultset was NULL

namecolumn Map resultset column name to
resultset column index

resultset Construct resultset object

Resultset Metadata Object
get Object properties

rsmd Construct resultset metadata object

4-6

Visual Query Builder

Visual Query Builder
confds Configure data source for Visual

Query Builder (JDBC)

querybuilder Start SQL query builder GUI to
import and export data

4-7

4 Functions — By Category

4-8

5

Functions — Alphabetical
List

attr

Purpose Attributes of columns in fetched data set

Syntax attributes = attr(curs, colnum)
attributes = attr(curs)

Description attributes = attr(curs, colnum) retrieves attribute information
for the specified column number colnum, in the fetched data set curs.

attributes = attr(curs) retrieves attribute information for all
columns in the fetched data set curs, and stores it in a cell array. Use
attributes(colnum) to display the attributes for column colnum.

The returned attributes are listed in the following table.

Attribute Description

fieldName Name of the column

typeName Data type

typeValue Numerical representation of the data type

columnWidth Size of the field

precision Precision value for floating and double data
types; an empty value is returned for strings

scale Precision value for real and numeric data
types; an empty value is returned for strings

currency If true, data format is currency

readOnly If true, the data cannot be overwritten

nullable If true, the data can be NULL

Message Error message returned by fetch

Examples Example 1 – Get Attributes for One Column

Get the column attributes for the fourth column of a fetched data set.

attr(curs, 4)

5-2

attr

ans =
fieldName: 'Age'
typeName: 'LONG'

typeValue: 4
columnWidth: 11

precision: []
scale: []

currency: 'false'
readOnly: 'false'
nullable: 'true'
Message: []

Example 2 – Get Attributes for All Columns

Get the column attributes for curs, and assign them to attributes.

attributes = attr(curs)

View the attributes of column 4.

attributes(4)

MATLAB returns the attributes of column 4.

ans =
fieldName: 'Age'
typeName: 'LONG'

typeValue: 4
columnWidth: 11

precision: []
scale: []

currency: 'false'
readOnly: 'false'
nullable: 'true'
Message: []

See Also cols, columnnames, columns, dmd, fetch, get, tables, width

5-3

bestrowid

Purpose Database table unique row identifier

Syntax b = bestrowid(dbmeta, 'cata', 'sch')
b = bestrowid(dbmeta, 'cata', 'sch', 'tab')

Description b = bestrowid(dbmeta, 'cata', 'sch') determines and returns
the optimal set of columns in a table that uniquely identifies a row, in
the schema sch, of the catalog cata, for the database whose database
metadata object is dbmeta, where dbmeta was created using dmd.

b = bestrowid(dbmeta, 'cata', 'sch', 'tab') determines and
returns the optimal set of columns that uniquely identifies a row in
table tab, in the schema sch, of the catalog cata, for the database
whose database metadata object is dbmeta, where dbmeta was created
using dmd.

Examples Type

b = bestrowid(dbmeta,'msdb','geck','builds')

MATLAB returns

b =
'build_id'

In this example:

• dbmeta is the database metadata object.

• msdb is the catalog cata.

• geck is the schema sch.

• builds is the table tab.

The results is build_id, which means that every entry in the build_id
column is unique and can be used to identify the row.

See Also columns, dmd, get, tables

5-4

clearwarnings

Purpose Clear warnings for database connection or resultset

Syntax clearwarnings(conn)
clearwarnings(rset)

Description clearwarnings(conn) clears the warnings reported for the database
connection object conn, which was created using database.

clearwarnings(rset) clears the warnings reported for the resultset
object rset, which was created using resultset.

For command line help on clearwarnings, use the overloaded methods.

help database/clearwarnings
help resultset/clearwarnings

Examples clearwarnings(conn) clears reported warnings for the database
connection object conn, which was created using conn =
database(...).

See Also database, get, resultset

5-5

close

Purpose Close database connection, cursor, or resultset object

Syntax close(object)

Description close(object) closes object, freeing up associated resources.

Following are the allowable objects for close.

Object Description
Action Performed by
close(object)

conn Database connection
object created using
database

closes conn

curs Cursor object created
using exec or fetch

closes curs

rset Resultset object defined
using resultset

closes rset

Database connections, cursors, and resultsets remain open until you
close them using the close function. Always close a cursor, connection,
or resultset when you finish using it so that MATLAB stops reserving
memory for it. Also, most databases limit the number of cursors and
connections that can be open at one time.

If you terminate a MATLAB session while cursors and connections are
open, MATLAB closes them, but your database might not free up the
connection or cursor. Therefore, always close connections and cursors
when you finish using them.

Close a cursor before closing the connection used for that cursor.

For command line help on close, use the overloaded methods.

help database/close
help cursor/close
help resultset/close

5-6

close

Examples To close the cursor curs and the connection conn, type

close(curs)
close(conn)

See Also database, exec, fetch, resultset

5-7

cols

Purpose Number of columns in fetched data set

Syntax numcols = cols(curs)

Description numcols = cols(curs) returns the number of columns in the fetched
data set curs.

Examples This example shows that there are three columns in the fetched data
set, curs.

numcols = cols(curs)

numcols =
3

See Also attr, columnnames, columnprivileges, columns, fetch, get, rows,
width

5-8

columnnames

Purpose Names of columns in fetched data set

Syntax colnames = columnnames(curs)

Description colnames = columnnames(curs) returns the column names in the
fetched data set curs. The column names are returned as a single
string vector.

Examples The fetched data set curs, contains three columns having the names
shown.

colnames = columnnames(curs)

colnames =
'Address', 'City', 'Country'

See Also attr, cols, columnprivileges, columns, fetch, get, width

5-9

columnprivileges

Purpose Database column privileges

Syntax lp = columnprivileges(dbmeta, 'cata', 'sch', 'tab')
lp = columnprivileges(dbmeta, 'cata', 'sch', 'tab', 'l')

Description lp = columnprivileges(dbmeta, 'cata', 'sch', 'tab') returns
the list of privileges for all columns in the table tab, in the schema sch,
of the catalog cata, for the database whose database metadata object is
dbmeta, where dbmeta was created using dmd.

lp = columnprivileges(dbmeta, 'cata', 'sch', 'tab', 'l')
returns the list of privileges for column l, in the table tab, in the
schema sch, of the catalog cata, for the database whose database
metadata object is dbmeta, where dbmeta was created using dmd.

Examples Type

lp = columnprivileges(dbmeta,'msdb','geck','builds',...
'build_id')

MATLAB returns

lp =
'builds' 'build_id' {1x4 cell}

In this example

• dbmeta is the database metadata object.

• msdb is the catalog cata.

• geck is the schema sch.

• builds is the table tab.

• build_id is the column name.

5-10

columnprivileges

The results show

• The table name, builds, in column 1.

• The column name, build_id, in column 2.

• The column privileges, lp, in column 3.

To view the contents of the third column in lp, type

lp{1,3}

MATLAB returns the column privileges for the build_id column.

ans =
'INSERT' 'REFERENCES' 'SELECT' 'UPDATE'

See Also cols, columns, columnnames, dmd, get

5-11

columns

Purpose Database table column names

Syntax l = columns(dbmeta, 'cata')
l = columns(dbmeta, 'cata', 'sch')
l = columns(dbmeta, 'cata', 'sch', 'tab')

Description l = columns(dbmeta, 'cata') returns the list of all column names in
the catalog cata, for the database whose database metadata object is
dbmeta, where dbmeta was created using dmd.

l = columns(dbmeta, 'cata', 'sch') returns the list of all column
names in the schema sch, of the catalog cata, for the database whose
database metadata object is dbmeta, where dbmeta was created using
dmd.

l = columns(dbmeta, 'cata', 'sch', 'tab') returns the list of
columns for the table tab, in the schema sch, of the catalog cata, for
the database whose database metadata object is dbmeta, where dbmeta
was created using dmd.

Examples Type

l = columns(dbmeta,'orcl', 'SCOTT')

MATLAB returns

l =
'BONUS' {1x4 cell}
'DEPT' {1x3 cell}
'EMP' {1x8 cell}
'SALGRADE' {1x3 cell}
'TRIAL' {1x3 cell}

5-12

columns

In this example:

• dbmeta is the database metadata object.

• orcl is the catalog cata.

• SCOTT is the schema sch.

The results show the names of the five tables and a cell array containing
the column names in the tables.

To see the column names for the BONUS table, type

l{1,2}

MATLAB returns

ans =
'ENAME' 'JOB' 'SAL' 'COMM'

which are the column names in the BONUS table.

See Also attr, bestrowid, cols, columnnames, columnprivileges, dmd, get,
versioncolumns

5-13

commit

Purpose Make database changes permanent

Syntax commit(conn)

Description commit(conn) makes permanent the changes made via fastinsert,
insert, or update to the database connection conn. The commit
function commits all changes made since the last commit or rollback
function was run, or the last exec function that performed a commit or
rollback. The AutoCommit flag for conn must be off to use commit.

Examples Ensure the AutoCommit flag for connection conn is off by typing

get(conn,'AutoCommit')

MATLAB returns

ans =
off

Insert the data contained in exdata into the columns DEPTNO, DNAME,
and LOC, in the table DEPT for the data source conn. Type

fastinsert(conn, 'DEPT', {'DEPTNO';'DNAME';'LOC'}, exdata)

Commit the data inserted in the database by typing

commit(conn)

The data is added to the database.

See Also database, exec, fastinsert, get, rollback, update

5-14

confds

Purpose Configure data source for Visual Query Builder (JDBC)

Graphical
Interface

As an alternative to the confds function, you can select Define JDBC
data sources from the Visual Query Builder Query menu.

Syntax confds

Description confds displays the Define JDBC Data Sources dialog box, with which
you add and remove data sources for use with the Visual Query Builder
(VQB). Use confds only if you want to build and run queries using the
Visual Query Builder via JDBC drivers.

To use JDBC data sources with Database Toolbox functions, you instead
define the JDBC data source when you establish the connection using
the database function. To add and remove data sources for connections
that use ODBC drivers, see “Setting Up a Data Source” on page 1-12.

To use a data source with JDBC drivers, you must include a reference
that specifies the location of the JDBC drivers file in a MATLAB Java

5-15

confds

classpath file. Then complete the Define JDBC Data Sources dialog box
by performing these steps:

1 “Find Your JDBC Drivers Filename” on page 1-19.

2 “Include the Reference in the MATLAB Java Classpath” on page 1-20.

3 “Define a JDBC Data Source in the Visual Query Builder” on page
1-22 (skip to step 2 in those instructions).

See Also database (for examples of JDBC drivers and URLs), querybuilder

5-16

crossreference

Purpose Information about primary and foreign keys

Syntax f = crossreference(dbmeta, 'pcata', 'psch', 'ptab', 'fcata', 'fsch', 'ftab')

Description f = crossreference(dbmeta, 'pcata', 'psch', 'ptab',
'fcata', 'fsch', 'ftab') returns information about the
relationship between foreign keys and primary keys. Specifically,
the information is for the database whose database metadata object
is dbmeta, where dbmeta was created using dmd. The primary key
information is for the table ptab, in the primary schema psch, of the
primary catalog pcata. The foreign key information is for the foreign
table ftab, in the foreign schema fsch, of the foreign catalog fcata.

Examples Type

f = crossreference(dbmeta,'orcl','SCOTT','DEPT',...
'orcl','SCOTT','EMP')

MATLAB returns

f =

Columns 1 through 7

'orcl' 'SCOTT' 'DEPT' 'DEPTNO' 'orcl' 'SCOTT' 'EMP'

Columns 8 through 13

'DEPTNO' '1' 'null' '1' 'FK_DEPTNO' 'PK_DEPT'

In this example:

• dbmeta is the database metadata object.

• orcl is the catalog pcata and the catalog fcata.

• SCOTT is the schema psch and the schema fsch.

• DEPT is the table ptab that contains the referenced primary key.

• EMP is the table ftab that contains the foreign key.

5-17

crossreference

The results show the primary and foreign key information.

Column Description Value

1 Catalog containing primary key,
referenced by foreign imported key

orcl

2 Schema containing primary key,
referenced by foreign imported key

SCOTT

3 Table containing primary key,
referenced by foreign imported key

DEPT

4 Column name of primary key,
referenced by foreign imported key

DEPTNO

5 Catalog that has foreign key orcl

6 Schema that has foreign key SCOTT

7 Table that has foreign key EMP

8 Foreign key column name, that is
the column name that references the
primary key in another table

DEPTNO

9 Sequence number within foreign key 1

10 Update rule, that is, what happens to
the foreign key when the primary key
is updated

null

11 Delete rule, that is, what happens to
the foreign key when the primary key
is deleted

1

12 Foreign imported key name FK_DEPTNO

13 Primary key name in referenced table PK_DEPT

In the schema SCOTT, there is only one foreign key. The table DEPT
contains a primary key DEPTNO that is referenced by the field DEPTNO in
the table EMP. DEPTNO in the EMP table is a foreign key.

5-18

crossreference

For a description of the codes for update and delete rules, see the Java
Web site for the getCrossReference property.

See Also dmd, exportedkeys, get, importedkeys, primarykeys

5-19

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

database

Purpose Connect to database

Graphical
Interface

As an alternative to the database function, you can connect to
databases using the Visual Query Builder. Run querybuilder to access
it and use the Help menu for more information.

Syntax conn = database('datasourcename','username','password')
conn = database('databasename','username',...
'password','driver','databaseurl')

Description conn = database('datasourcename','username','password')
connects a MATLAB session to a database via an ODBC driver,
returning the connection object to conn. The data source to which you
are connecting is datasourcename. You must have previously set up
the data source — for instructions, see “Setting Up a Data Source” on
page 1-12. username and password are the username and/or password
required to connect to the database. If you do not need a username
or a password to connect to the database, use empty strings as the
arguments. After connecting, use exec to retrieve data.

conn = database('databasename','username',...
'password','driver','databaseurl') connects a MATLAB session
to a database, databasename, via the specified JDBC driver, returning
the connection object to conn. The username and/or password required
to connect to the database are username and password. If you do
not need a username or a password to connect to the database, use
empty strings as the arguments. The JDBC driver is sometimes
referred to as the class that implements the Java SQL driver for
your database. databaseurl is the JDBC URL object of the form
jdbc:subprotocol:subname. The subprotocol is a database type,
such as oracle. The subname might contain other information used
by driver, such as the location of the database and/or a port number.
The subname might take the form //hostname:port/databasename.
Find the correct driver name and databaseurl format in the driver
manufacturer’s documentation. Some sample databaseurl strings are
listed in “Example 3 — Establish JDBC Connection” on page 5-22.

5-20

database

If database establishes a connection, MATLAB returns information
about the connection object.

Instance: 'SampleDB'

UserName: ''

Driver: []

URL: []

Constructor: [1x1 com.mathworks.toolbox.database.databaseConnect]

Message: []

Handle: [1x1 sun.jdbc.odbc.JdbcOdbcConnection]

TimeOut: 0

AutoCommit: 'off'

Type: 'Database Object'

Use logintimeout before you use database to specify the maximum
amount of time for which database tries to establish a connection.

You can have multiple database connections open at one time.

After connecting to a database, use the ping function to view status
information about the connection, and use dmd, get, and supports to
view properties of conn.

The database connection stays open until you close it using the close
function. Always close a connection after you finish using it.

Examples Example 1 — Establish ODBC Connection

To connect to an ODBC data source called Pricing, where the database
has a user mike and a password bravo, type

conn = database('Pricing', 'mike', 'bravo');

Example 2 — Establish ODBC Connection Without Username
and Password

To connect to an ODBC data source SampleDB, where a username
and password are not needed, use empty strings in place of those
arguments. Type

5-21

database

conn = database('SampleDB','','');

Example 3 — Establish JDBC Connection

In this JDBC connection example, the database is oracle, the username
is scott, and the password is tiger. The oci7 JDBC driver name is
oracle.jdbc.driver.OracleDriver and the URL that specifies the
location of the database server is jdbc:oracle:oci7.

conn = database('oracle','scott','tiger',...
'oracle.jdbc.driver.OracleDriver','jdbc:oracle:oci7:');

The JDBC name and URL take different forms for different databases,
as shown in the examples in the following table.

Database JDBC Driver and Database URL Examples

Informix JDBC driver: com.informix.jdbc.IfxDriver

Database URL: jdbc:informix-sqli://161.144.202.206:3000:
INFORMIXSERVER=stars

MySQL JDBC driver: twz1.jdbc.mysql.jdbcMysqlDriver

Database URL: jdbc:z1MySQL://natasha:3306/metrics

JDBC driver: com.mysql.jdbc.Driver

Database URL: jdbc:mysql://devmetrics.mrkps.com/testing

Oracle
oci7 drivers

JDBC driver: oracle.jdbc.driver.OracleDriver

Database URL: jdbc:oracle:oci7:@rex

Oracle
oci8 drivers

JDBC driver: oracle.jdbc.driver.OracleDriver

Database URL: jdbc:oracle:oci8:@111.222.333.44:1521:

Database URL: jdbc:oracle:oci8:@frug

Oracle
thin drivers

JDBC driver: oracle.jdbc.driver.OracleDriver

Database URL: jdbc:oracle:thin:@144.212.123.24:1822:

5-22

database

Database JDBC Driver and Database URL Examples

Oracle 10
connections
with JDBC (thin
drivers)

JDBC driver: oracle.jdbc.driver.OracleDriver
Database URL: jdbc:oracle:thin: (do not specify the
target name and port)

PostgreSQL JDBC driver: org.postgresql.Driver

Database URL: jdbc:postgresql://masd/MOSE

PostgreSQL
with SSL
connection

JDBC driver: org.postgresql.Driver

Database URL: jdbc:postgresql:servername:dbname:ssl=
true&sslfactory=org.postgresql.ssl.NonValidatingFactory& (the
trailing & is required)

Microsoft SQL
Server

JDBC driver: com.microsoft.jdbc.sqlserver.SQLServerDriver

Database URL: jdbc:microsoft:sqlserver://127.0.0.1:1403

JDBC driver: com.inet.tds.TdsDriver

Database URL: jdbc:inetdae:sqlgckprod:1433?database=gck

Sybase SQL
Server and SQL
Anywhere

JDBC driver: com.sybase.jdbc.SybDriver

Database URL: jdbc:sybase:Tds:yourhostname:yourportnumber/

For the Oracle thin drivers example, in the database URL
jdbc:oracle:thin:@144.212.123.24:1822, the target machine that
the database server resides on is 144.212.123.24, and the port number
is 1822.

For Microsoft SQL Server 2000, you may also need to pass the database
name, username, and password via the URL. For example,

conn = database('pubs','sa','sec',
'com.microsoft.jdbc.sqlserver.SQLServerDriver',
'jdbc:microsoft:sqlserver://127.0.0.1:1403;
database=pubs;user=sa;password=sec')

5-23

database

See Also close, dmd, exec, fastinsert, get, getdatasources, isconnection,
isreadonly, logintimeout, ping, supports, update

5-24

dmd

Purpose Construct database metadata object

Syntax dbmeta = dmd(conn)

Description dbmeta = dmd(conn)) constructs a database metadata object for the
database connection conn, which was created using database. Use get
and supports to obtain properties of dbmeta. Use dmd and get(dbmeta)
to obtain information you need about a database, such as the database
table names to retrieve data using exec.

For a list of other functions you can perform on dbmeta, type

help dmd/Contents

Examples dbmeta = dmd(conn) creates the database metadata object dbmeta
for the database connection conn.

v = get(dbmeta) lists the properties of the database metadata object.

See Also columns, database, get, supports, tables

5-25

driver

Purpose Construct database driver object

Syntax d = driver('s')

Description d = driver('s') constructs a database driver object d, from s, where
s is a database URL string of the form jdbc:odbc:<name> or <name>.
The driver object d is the first driver that recognizes s.

Examples d = driver('jdbc:odbc:thin:@144.212.123.24:1822:') creates
driver object d.

See Also get, isdriver, isjdbc, isurl, register

5-26

drivermanager

Purpose Construct database drivermanager object

Syntax dm = drivermanager

Description dm = drivermanager constructs a database drivermanager object. You
can then use get and set to obtain and change the properties of dm,
which are the properties for all loaded database drivers as a whole.

Examples dm = drivermanager creates the database drivermanager object dm.

get(dm) returns the properties of the drivermanager object dm.

See Also get, register, set

5-27

exec

Purpose Execute SQL statement and open cursor

Graphical
Interface

As an alternative to the exec function, you can query databases using
the Visual Query Builder. Run querybuilder to access it and use the
Help menu for more information.

Syntax curs = exec(conn, 'sqlquery')

Description curs = exec(conn, 'sqlquery') executes the valid SQL statement
sqlquery, against the database connection conn, and opens a cursor.
Running exec returns the cursor object to the variable curs, and
returns information about the cursor object. The sqlquery argument
can be a stored procedure for that database connection, of the form
{call sp_name (parm1,parm2,...)}.

Remarks • After opening a cursor, use fetch to import data from the cursor. Use
resultset, rsmd, and statement to get properties of the cursor.

• Use querytimeout to determine the maximum amount of time for
which exec will try to complete the SQL statement.

• You can have multiple cursors open at one time.

• A cursor stays open until you close it using the close function.
Always close a cursor after you finish using it.

• Perform database administrative tasks, such as creating tables,
using your database system application. The Database Toolbox is not
intended to be used as a tool for database administration.

• Unless specifically noted in this reference page, all valid SQL
statements, such as nested queries, are supported by the exec
function.

• Do not count on the order of records in your database as being
constant, but rather always use the values in column names to
identify records. Use the SQL ORDER BY command to perform sorting.

• If you attempt to modify database tables from the Database Toolbox,
be sure that you (or another user for a shared database) do not have

5-28

exec

the database open for editing (design mode in Microsoft Access). If
the database is open for editing and you try to modify it, you will
receive the following error in MATLAB.

[Vendor][ODBC Driver] The database engine could not lock
table 'TableName' because it is already in use by
another person or process.

• For Microsoft Excel, tables in sqlquery are Excel sheets. By default,
some sheet names include $. To select data from a sheet with this
name format, the SQL statement should be of this form: select *
from "Sheet1$" (or 'Sheet1$') .

• For the Microsoft SQL Server database management system, you
might experience problems with text field formats. One workaround
is to convert fields of the formats NVARCHAR, TEXT, NTEXT, and VARCHAR
to CHAR on the database side. Another possible workaround is to
convert data to VARCHAR as part of sqlquery. As an example, use a
sqlquery of the form 'select convert(varchar(20), field1)
from table1'

• The PostgreSQL database management system supports
multidimensional fields, but SQL select statements fail when
getting these fields unless an index is specified.

• Some databases require that you include the # symbol before and
after a date in a query. Some databases use a different symbol, while
most require none. For example

curs = exec(conn,'select * from mydb where mydate > #03/05/2005#')

5-29

exec

Examples Example 1 — Select All Data from Database Table

Select all data from the customers table accessed via the database
connection, conn. Assign the returned cursor object to the variable curs.

curs = exec(conn, 'select * from customers')

curs =

Attributes: []

Data: 0

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select * from customers'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: 0

Example 2 — Select One Column of Data from Database Table

Select country data from the customers table accessed via the database
connection, conn. Assign the SQL statement to the variable sqlquery
and assign the returned cursor to the variable curs.

sqlquery = 'select country from customers';
curs = exec(conn, sqlquery);

Example 3 — Use Variable in a Query

Select data from the customers table accessed via the database
connection conn, where country is a variable. In this example, the user
is prompted to supply their country, which is assigned to the variable
UserCountry.

UserCountry = input('Enter your country: ', 's')

5-30

exec

MATLAB prompts

Enter your country:

The user responds

Mexico

Without using a variable, the function to retrieve the data would be

curs = exec(conn, ...
['select * from customers where country = ''Mexico'''])
curs=fetch(curs)

To instead perform the query using the user’s response, use

curs = exec(conn, ...
['select * from customers where country= ', ...
''UserCountry''])
curs=fetch(curs)

The select statement is created by using square brackets to concatenate
the two strings 'select * from customers where country =' and
'UserCountry'.

Example 4 — Roll Back or Commit Data Exported to Database
Table

Use exec to roll back or commit data after running a fastinsert,
insert, or an update for which the AutoCommit flag is off. To roll back
data for the database connection conn, type

exec(conn, 'rollback')

To commit the data, type:

exec(conn, 'commit');

5-31

exec

Example 5 — Run Stored Procedure

Execute the stored procedure sp_customer_list for the database
connection conn.

curs = exec(conn,'sp_customer_list');

You can run a stored procedure with input parameters, for example

curs = exec(conn,'{call sp_name (parm1,parm2,...)}');

Example 6 — Change Catalog

To change the catalog for the database connection conn to intlprice.

curs = exec(conn,'Use intlprice');

See Also close, database, fastinsert, fetch, procedures, querybuilder,
querytimeout, resultset, rsmd, set, update

“Data Retrieval Restrictions” on page 1-7

5-32

exportedkeys

Purpose Information about exported foreign keys

Syntax e = exportedkeys(dbmeta, 'cata', 'sch')
e = exportedkeys(dbmeta, 'cata', 'sch', 'tab')

Description e = exportedkeys(dbmeta, 'cata', 'sch') returns the foreign
exported key information (that is, information about primary keys that
are referenced by other tables), in the schema sch, of the catalog cata,
for the database whose database metadata object is dbmeta, where
dbmeta was created using dmd.

e = exportedkeys(dbmeta, 'cata', 'sch', 'tab') returns the
exported foreign key information (that is, information about the
primary key which is referenced by other tables), in the table tab, in
the schema sch, of the catalog cata, for the database whose database
metadata object is dbmeta, where dbmeta was created using dmd.

Examples Type

e = exportedkeys(dbmeta,'orcl','SCOTT')

MATLAB returns

e =

Columns 1 through 7

'orcl' 'SCOTT' 'DEPT' 'DEPTNO' 'orcl' 'SCOTT' 'EMP'

Columns 8 through 13

'DEPTNO' '1' 'null' '1' 'FK_DEPTNO' 'PK_DEPT'

In this example:

• dbmeta is the database metadata object.

• the cata field is empty because this database does not include
catalogs.

• SCOTT is the schema sch.

5-33

exportedkeys

The results show the foreign exported key information.

Column Description Value

1 Catalog containing primary key that is
exported

null

2 Schema containing primary key that is
exported

SCOTT

3 Table containing primary key that is
exported

DEPT

4 Column name of primary key that is
exported

DEPTNO

5 Catalog that has foreign key null

6 Schema that has foreign key SCOTT

7 Table that has foreign key EMP

8 Foreign key column name, that is the
column name that references the primary
key in another table

DEPTNO

9 Sequence number within the foreign key 1

10 Update rule, that is, what happens to the
foreign key when the primary key is updated

null

11 Delete rule, that is, what happens to the
foreign key when the primary key is deleted

1

12 Foreign key name FK_DEPTNO

13 Primary key name that is referenced by
foreign key

PK_DEPT

In the schema SCOTT, there is only one primary key that is exported to
(referenced by) another table. The table DEPT contains a field DEPTNO,
its primary key, that is referenced by the field DEPTNO in the table EMP.
The referenced table is DEPT and the referencing table is EMP. In the

5-34

exportedkeys

DEPT table, DEPTNO is an exported key. Reciprocally, the DEPTNO field in
the table EMP is an imported key.

For a description of the codes for update and delete rules, see the Java
Web site for the getExporetedKeys property.

See Also crossreference, dmd, get, importedkeys, primarykeys

5-35

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

fastinsert

Purpose Add MATLAB data to database table

Graphical
Interface

As an alternative to the fastinsert function, you can export data using
the Visual Query Builder, with the Data operation set to Insert. Note
that the VQB actually uses the insert function instead of fastinsert.

Syntax fastinsert(conn, 'tablename', colnames, exdata)

Description fastinsert(conn, 'tablename', colnames, exdata) exports
records from the MATLAB variable exdata, into new rows in an existing
database table tablename, via the connection conn. The variable
exdata can be a cell array, numeric matrix, or structure. You do not
define the type of data you are exporting; the data is exported in its
current MATLAB format. Specify the column names for tablename as
strings in the MATLAB cell array, colnames. If exdata is a structure,
field names in the structure must exactly match colnames.

The status of the AutoCommit flag determines if fastinsert
automatically commits the data or if you need to commit the data
following the insert. View the AutoCommit flag status for the connection
using get and change it using set. Commit the data using commit or
issue an SQL commit statement via an exec function. Roll back the
data using rollback or issue an SQL rollback statement via an exec
function.

To replace existing data instead of adding new rows, use update.

Remarks The fastinsert function replaces the insert function. It improves
upon insert by offering better performance and supporting more object
types. If fastinsert does not work as expected, try insert instead,
especially if you used insert successfully in the past. The insert
function has the same syntax as fastinsert. Note that the VQB uses
insert instead of fastinsert.

Do not count on the order of records in your database as being constant,
but rather always use the values in column names to identify records.

5-36

fastinsert

If you get an error when you use fastinsert, it might be because the
table is open in design mode in Access (edit mode for other databases).
Close the table in the database and repeat the fastinsert function.
For example, the error might be

[Vendor][ODBC Product Driver] The database engine could
not lock table 'TableName' because it is already in use
by another person or process.

Examples Example 1 — Insert a Record

Insert one record consisting of two columns, City and Avg_Temp, into
the Temperatures table. The data is San Diego, 88 degrees. The
database connection is conn.

Assign the data to the cell array.

exdata = {'San Diego', 88}

Create a cell array containing the column names in Temperatures.

colnames = {'City', 'Avg_Temp'}

Perform the insert.

fastinsert(conn, 'Temperatures', colnames, exdata)

The row of data is added to the Temperatures table.

Example 2 — Insert Multiple Records

Insert a cell array, exdata, containing multiple rows of data with
three columns, into the Growth table. The data columns are Date,
Avg_Length, and Avg_Wt. The database connection is conn.

Insert the data.

fastinsert(conn, 'Growth', ...
{'Date';'Avg_Length';'Avg_Wt'}, exdata)

The records are inserted in the table.

5-37

fastinsert

Example 3 — Import Records, Perform Computations, and
Export Data

Perform calculations on imported data and then export the data. First
import all of the data from the products table. Because the data
contains numeric and character data, import the data into a cell array.

conn = database('SampleDB', '', '');
curs = exec(conn, 'select * from products');
setdbprefs('DataReturnFormat','cellarray')
curs = fetch(curs);

Assign the first column of data to the variable prod_name.

prod_name = curs.Data(:,1);

Assign the sixth column of data to the variable price.

price = curs.Data(:,6);

Calculate the discounted price (25% off) and assign it to the variable
new_price. You must convert the cell array price to a numeric matrix in
order to perform the calculation.

new_price =.75*[price{:}]

Export the prod_name, price, and new_price data to the Sale table.
Because prod_name is a character array and price is numeric, export
the data as a cell array, which supports mixed data types. The variable
new_price is a numeric matrix because it was the result of the discount
calculation. You must convert new_price to a cell array. To convert the
columns of data in new_price to a cell array, type

new_price = num2cell(new_price);

5-38

fastinsert

Create an array, exdata, that contains the three columns of data to be
exported. Put the prod_name data in column 1, price in column 2,
and new_price in column 3.

exdata(:,1) = prod_name(:,1);
exdata(:,2) = price;
exdata(:,3) = new_price;

Assign the column names to a string array, colnames.

colnames={'product_name', 'price', 'sale_price'};

Export the data to the Sale table.

fastinsert(conn, 'Sale', colnames, exdata)

All rows of data are inserted into the Sale table.

Example 4 — Insert Numeric Data

Export the tax_rate data into the Tax table, where tax_rate is a
numeric matrix consisting of two columns:

fastinsert(conn, 'Tax', {'rate','max_value'}, tax_rate)

When exporting, you do not need to define the type of data you are
exporting. The format in setdbprefs does not apply when exporting
data from MATLAB.

Example 5 — Insert Followed by commit

This example demonstrates the use of the SQL commit function
following an insert. The AutoCommit flag is off.

Insert the cell array exdata into the column names colnames of the
Error_Rate table.

fastinsert(conn, 'Error_Rate', colnames, exdata)

5-39

fastinsert

Commit the data using the commit function.

commit(conn)

Alternatively, you could commit the data using the exec function with
an SQL commit statement.

cursor = exec(conn,'commit');

Example 6 — Insert BOOLEAN Data

Insert BOOLEAN data (the logical data type in MATLAB) from MATLAB
to a database.

conn = database('SampleDB', '', '');
P.ProductName{1}='Chocolate Truffles';
P.Discontinued{1}=logical(0);
fastinsert(conn,'Products',...
{'ProductName';'Discontinued'}, P)

View the new record in the database to verify that value in the
Discontinued field is BOOLEAN. For some databases, the MATLAB
logical 0 is shown as a BOOLEAN false (or No or a cleared check box).

See Also commit, database, exec, insert, logical, querybuilder, rollback,
set, update

5-40

fetch

Purpose Import data into MATLAB

Graphical
Interface

As an alternative to the fetch function, you can retrieve data using
the Visual Query Builder. Run querybuilder and use the Help menu
for more information.

Syntax curs = fetch(curs, RowLimit)
curs = fetch(curs)

Description curs = fetch(curs, RowLimit) imports rows of data from the open
SQL cursor curs (created using exec), up to the maximum RowLimit,
into the object curs. Data is stored in MATLAB in a cell array, structure,
or numeric matrix, based on specifications made using setdbprefs. It is
common practice to assign the object returned by fetch to the variable
curs from the open SQL cursor. The next time you run fetch, records
are imported starting with the row following RowLimit. If you fetch
large amounts of data that cause out of memory or speed problems, use
RowLimit to limit how much data is retrieved at once.

curs = fetch(curs) imports rows of data from the open SQL cursor
curs, up to the RowLimit specified by set, into the object curs. Data is
stored in MATLAB in a cell array, structure, or numeric matrix, based
on specifications you made using setdbprefs. It is common practice to
assign the object returned by fetch to the variable curs from the open
SQL cursor. The next time you run fetch, records are imported starting
with the row following RowLimit. If no RowLimit was specified by set,
fetch imports all remaining rows of data.

Remarks Do not count on the order of records in your database as being constant,
but rather always use the values in column names to identify records.
You can use the SQL ORDER BY command in your exec statement to
sort the data.

Running fetch returns information about the cursor object, curs,
created using exec. The Data element of the cursor object contains the
data returned by fetch. The data types are preserved. After running
fetch, display the returned data by typing curs.Data.

5-41

fetch

When a fetched field contains BOOLEAN data, it is represented as a
logical data type in MATLAB.

When a field in curs.Data contains BINARY or OTHER data types, you
might need to understand the content and process it before using it in
MATLAB. See “Retrieving BINARY or OTHER Java SQL Data Types”
on page 3-24 for a specific example about processing bitmap image data.

Use get to view properties of curs.

Examples Example 1 — Import All Rows of Data

Import all of the data into the cursor object curs.

curs = fetch(curs)

MATLAB returns

curs =

Attributes: []

Data: {91x1 cell}

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select country from customers'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

The fetch operation stores the data in a cell array contained in the
cursor object field curs.Data. To display data in curs.Data, type

curs.Data

5-42

fetch

MATLAB returns all of the data, which in this example consists of 1
column and 91 rows, some of which are shown here.

ans =
'Germany'
'Mexico'
'Mexico'
'UK'
'Sweden'
.
.
.

'USA'
'Finland'
'Poland'

Example 2 — Import Specified Number of Rows of Data

Specify the RowLimit argument to retrieve the first three rows of data.

curs = fetch(curs, 3)

MATLAB returns

curs =

Attributes: []

Data: {3x1 cell}

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select country from customers'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

5-43

fetch

Display the data by typing

curs.Data

MATLAB returns

ans =
'Germany'
'Mexico'
'Mexico'

Entering the fetch function again returns the second three rows of
data. Adding the semicolon suppresses display of the results.

curs = fetch(curs, 3);

Display the data by typing

curs.Data

MATLAB returns

ans =
'UK'
'Sweden'
'Germany'

5-44

fetch

Example 3 — Repeat Importing Rows to Retrieve All Data

In this example, specify the RowLimit argument to retrieve the first 10
rows of data, and then repeat the import using a while loop, 10 rows at
a time. Continue until all data has been retrieved, which occurs when
curs.Data is 'No Data'.

% Initialize RowLimit (fetchsize)
fetchsize = 10
% Check for more data. Retrieve and display all data.
while ~strcmp(curs.Data, 'No Data')
curs=fetch(curs,fetchsize);
curs.Data(:)

end

When processing terminates, MATLAB returns

ans =
'No Data'

Example 4 — Import Numeric Data

Import a column of data that is known to be numeric. Use setdbprefs
to specify the format for the retrieved data as numeric.

conn = database('SampleDB', '', '');
curs=exec(conn, 'select all UnitsInStock from Products');
setdbprefs('DataReturnFormat','numeric')
curs=fetch(curs,3);
curs.Data

MATLAB retrieves the data into a numeric matrix.

ans =
39
17
13

5-45

fetch

Example 5 — Import BOOLEAN Data

Import data that includes a BOOLEAN field. Use setdbprefs to specify
the format for the retrieved data as cellarray.

conn = database('SampleDB', '', '');
curs=exec(conn, 'select ProductName, ...
Discontinued fromProducts');
setdbprefs('DataReturnFormat','cellarray')
curs=fetch(curs,5);
A=curs.Data
A =

'Chai' [0]
'Chang' [0]
'Aniseed Syrup' [0]

[1x28 char] [0]
[1x22 char] [1]

View the class of the second column in A.

class(A{1,2}
ans =
logical

See Also attr, cols, columnnames, exec, get, logical, rows, resultset, set,
width

“Retrieving BINARY or OTHER Java SQL Data Types” on page 3-24

5-46

get

Purpose Object properties

Syntax v = get(object)
v = get(object, 'property')
v.property

Description v = get(object) returns a structure of the properties of object and
the corresponding property values, assigning the structure to v.

v = get(object, 'property') retrieves the value of property for
object, assigning the value to v.

v.property returns the value of property, after you have created v
using get.

Use set(object) to see a list of writable properties for object.

Allowable objects are

• “Database Connection Object” on page 5-48, created using database

• “Cursor Object” on page 5-49, created using exec or fetch

• “Driver Object” on page 5-50, created using driver

• “Database Metadata Object” on page 5-50, created using dmd

• “Drivermanager Object” on page 5-51, created using drivermanager

• “Resultset Object” on page 5-51, created using resultset

• “Resultset Metadata Object” on page 5-52, created using rsmd

If you are calling these objects from your own Java-based applications,
see the Java Web site for more information about the object properties.

5-47

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

get

Database Connection Object

Allowable property names and returned values for a database
connection object are listed in the following table.

Property Value

'AutoCommit' Status of the AutoCommit flag, either on or off, as
specified by set

'Catalog' Names of catalogs in the data source, for example,
'Nwind'

'Driver' Driver used for the JDBC connection, as specified by
database

'Handle' Identifying JDBC connection object

'Instance' Name of the data source for an ODBC connection or
the database for a JDBC connection, as specified by
database

'Message' Error message returned by database

'ReadOnly' 1 if the database is read only; 0 if the database is
writable

'TimeOut' Value for LoginTimeout

'TransactionIsolation' Value of current transaction isolation mode

'Type' Object type, specifically Database Object

'URL' For a JDBC connection only, the JDBC URL object,
jdbc:subprotocol:subname, as specified by database

'UserName' Username required to connect to the database, as
specified by database; note that you cannot use get
to retrieve password

'Warnings' Warnings returned by database

5-48

get

Cursor Object

Allowable property names and returned values for a cursor object are
listed in the following table.

Property Value

'Attributes' Cursor attributes

'Data' Data in the cursor object data element (the
query results)

'DatabaseObject' Information about the database object

'RowLimit' Maximum number of rows to be returned by
fetch, as specified by set

'SQLQuery' SQL statement for the cursor, as specified
by exec

'Message' Error message returned from exec or fetch

'Type' Object type, specifically Database Cursor
Object

'ResultSet' Resultset object identifier

'Cursor' Cursor object identifier

'Statement' Statement object identifier

'Fetch' 0 for cursor created using exec;
fetchTheData for cursor created using
fetch

5-49

get

Driver Object

Allowable property names and examples of values for a driver object
are listed in the following table.

Property Example of Value

'MajorVersion' 1

'MinorVersion' 1001

Database Metadata Object

There are dozens of properties for a database metadata object. Some of
the allowable property names and examples of their values are listed in
the following table.

Property Example of Value

'Catalogs' {4x1 cell}

'DatabaseProductName' 'ACCESS'

'DatabaseProductVersion' '03.50.0000'

'DriverName' 'JDBC-ODBC Bridge (odbcjt32.dll)'

'MaxColumnNameLength' 64

'MaxColumnsInOrderBy' 10

'URL' 'jdbc:odbc:dbtoolboxdemo'

'NullsAreSortedLow' 1

5-50

get

Drivermanager Object

Allowable property names and examples of values for a drivermanager
object are listed in the following table.

Property Example of Value

'Drivers' {'oracle.jdbc.driver.OracleDriver@1d8e09ef'
[1x37 char]}

'LoginTimeout' 0

'LogStream' []

Resultset Object

Some of the allowable property names for a resultset object and
examples of their values are listed in the following table.

Property Example of Value

'CursorName' {'SQL_CUR92535700x'
'SQL_CUR92535700x'}

'MetaData' {1x2 cell}

'Warnings' {[] []}

5-51

get

Resultset Metadata Object

Allowable property names for a resultset metadata object and examples
of values are listed in the following table.

Property Example of Value

'CatalogName' {'' ''}

'ColumnCount' 2

'ColumnName' {'Calc_Date' 'Avg_Cost'}

'ColumnTypeName' {'TEXT' 'LONG'}

'TableName' {'' ''}

'isNullable' {[1] [1]}

'isReadOnly' {[0] [0]}

The empty strings for CatalogName and TableName indicate that the
database does not return these values.

For command line help on get, use the overloaded methods.

help cursor/get
help database/get
help dmd/get
help driver/get
help drivermanager/get
help resultset/get
help rsmd/get

Examples Example 1 — Get Connection Property, Data Source Name

Connect to the database, SampleDB. Then get the name of the data
source for the connection and assign it to v.

conn = database('SampleDB', '', '');
v = get(conn, 'Instance')

5-52

get

Example 2 — Get Connection Property, AutoCommit Flag Status

Determine the status of the AutoCommit flag for the database connection
conn.

get(conn, 'AutoCommit')

ans =
on

Example 3 — Display Data in Cursor

Display the data in the cursor object, curs, by typing

get(curs, 'Data')

or by typing

curs.Data

MATLAB returns

ans =
'Germany'
'Mexico'
'France'
'Canada'

In this example, curs contains one column with four records.

Example 4 — Get Database Metadata Object Properties

View the properties of the database metadata object for connection
conn. Type

dbmeta = dmd(conn);
v = get(dbmeta)

5-53

get

MATLAB returns a list of properties, some of which are shown here.

v =
AllProceduresAreCallable: 1

AllTablesAreSelectable: 1
DataDefinitionCausesTransaction: 1
DataDefinitionIgnoredInTransact: 0

DoesMaxRowSizeIncludeBlobs: 0
Catalogs: {4x1 cell}

NullPlusNonNullIsNull: 0
NullsAreSortedAtEnd: 0

NullsAreSortedAtStart: 0
NullsAreSortedHigh: 0
NullsAreSortedLow: 1

UsesLocalFilePerTable: 0
UsesLocalFiles: 1

To view the names of the catalogs in the database, type

v.Catalogs

MATLAB returns the catalog names

ans =
'D:\matlab\toolbox\database\dbdemos\db1'
'D:\matlab\toolbox\database\dbdemos\origtutorial'
'D:\matlab\toolbox\database\dbdemos\tutorial'
'D:\matlab\toolbox\database\dbdemos\tutorial1'

See Also columns, database, dmd, driver, drivermanager, exec, fetch,
getdatasources, resultset, rows, rsmd, set

5-54

getdatasources

Purpose Names of valid ODBC and JDBC data sources on system

Syntax d = getdatasources

Description d = getdatasources returns the names of valid ODBC and JDBC
data sources on the system as a cell array of strings. The function gets
the names of ODBC data sources from the odbc.ini file located in the
directory returned by running

getenv('WINDIR')

If d is empty, the odbc.ini file is valid but no data sources have been
defined. If d equals -1, the odbc.ini file could not be opened. The
function also gets the names of data sources in the system registry but
not in the odbc.ini file.

The function gets the names of JDBC data sources from the file defined
using setdbprefs or the Define JDBC Data Sources dialog box (confds).

Examples Type

d = getdatasources

MATLAB returns the three valid databases on the system:

d =
'MS Access Database' 'SampleDB' 'dbtoolboxdemo'

See Also database, get

5-55

importedkeys

Purpose Information about imported foreign keys

Syntax i = importedkeys(dbmeta, 'cata', 'sch')
i = importedkeys(dbmeta, 'cata', 'sch', 'tab')

Description i = importedkeys(dbmeta, 'cata', 'sch') returns the foreign
imported key information, that is, information about fields that
reference primary keys in other tables, in the schema sch, of the catalog
cata, for the database whose database metadata object is dbmeta,
where dbmeta was created using dmd.

i = importedkeys(dbmeta, 'cata', 'sch', 'tab') returns the
foreign imported key information, that is, information about fields in
the table tab, that reference primary keys in other tables, in the schema
sch, of the catalog cata, for the database whose database metadata
object is dbmeta, where dbmeta was created using dmd.

Examples Type

i = importedkeys(dbmeta,'orcl','SCOTT')

MATLAB returns

i =

Columns 1 through 7

'orcl' 'SCOTT' 'DEPT' 'DEPTNO' 'orcl' 'SCOTT' 'EMP'

Columns 8 through 13

'DEPTNO' '1' 'null' '1' 'FK_DEPTNO' 'PK_DEPT'

In this example:

• dbmeta is the database metadata object.

• orcl is the catalog cata.

• SCOTT is the schema sch.

5-56

importedkeys

The results show the foreign imported key information as described in
the following table.

Column Description Value

1 Catalog containing primary key, referenced
by foreign imported key

orcl

2 Schema containing primary key, referenced
by foreign imported key

SCOTT

3 Table containing primary key, referenced by
foreign imported key

DEPT

4 Column name of primary key, referenced by
foreign imported key

DEPTNO

5 Catalog that has foreign imported key orcl

6 Schema that has foreign imported key SCOTT

7 Table that has foreign imported key EMP

8 Foreign key column name, that is the column
name that references the primary key in
another table

DEPTNO

9 Sequence number within foreign key 1

10 Update rule, that is, what happens to the
foreign key when the primary key is updated

null

11 Delete rule, that is, what happens to the
foreign key when the primary key is deleted

1

12 Foreign imported key name FK_DEPTNO

13 Primary key name in referenced table PK_DEPT

In the schema SCOTT there is only one foreign imported key. The table
EMP contains a field, DEPTNO, that references the primary key in the
DEPT table, the DEPTNO field. EMP is the referencing table and DEPT is
the referenced table. DEPTNO is a foreign imported key in the EMP table.

5-57

importedkeys

Reciprocally, the DEPTNO field in the table DEPT is an exported foreign
key, as well as being the primary key.

For a description of the codes for update and delete rules, see the Java
Web site for the getImportedKeys property.

See Also crossreference, dmd, exportedkeys, get, primarykeys

5-58

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

indexinfo

Purpose Indices and statistics for database table

Syntax x = indexinfo(dbmeta, 'cata', 'sch', 'tab')

Description x = indexinfo(dbmeta, 'cata', 'sch', 'tab') returns the indices
and statistics for the table tab, in the schema sch, of the catalog cata,
for the database whose database metadata object is dbmeta, where
dbmeta was created using dmd.

Examples Type

x = indexinfo(dbmeta,'','SCOTT','DEPT')

MATLAB returns

x =
Columns 1 through 8
'orcl' 'SCOTT' 'DEPT' '0' 'null' 'null' '0' '0'
'orcl' 'SCOTT' 'DEPT' '0' 'null' 'PK_DEPT' '1' '1'

Columns 9 through 13
'null' 'null' '4' '1' 'null'
'DEPTNO' 'null' '4' '1' 'null'

In this example:

• dbmeta is the database metadata object.

• orcl is the catalog cata.

• SCOTT is the schema sch.

• DEPT is the table tab.

The results contain two rows, meaning there are two index columns.
The statistics for the first index column are shown in the following table.

5-59

indexinfo

Column Description Value

1 Catalog orcl

2 Schema SCOTT

3 Table DEPT

4 Non-unique: 0 if index values can be
non-unique, 1 otherwise

0

5 Index catalog null

6 Index name null

7 Index type 0

8 Column sequence number within
index

0

9 Column name null

10 Column sort sequence null

11 Number of rows in the index table or
number of unique values in the index

4

12 Number of pages used for the table or
number of pages used for the current
index

1

13 Filter condition null

For more information about the index information, see the Java Web
site for a description of the getIndexInfo property.

See Also dmd, get, tables

5-60

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

insert

Purpose Add MATLAB data to database table (deprecated; use fastinsert
instead)

Syntax insert(conn, 'tab', colnames, exdata)

Description insert(conn, 'tab', colnames, exdata) The insert function
was replaced by fastinsert, which offers improved performance and
supports more data types. Use insert if fastinsert does not work as
you expected, especially if you used insert successfully in the past.

The insert function uses the same syntax as fastinsert; for details,
see fastinsert.

Note that the VQB uses insert instead of fastinsert.

See Also commit, fastinsert, querybuilder, rollback

5-61

isconnection

Purpose Detect whether database connection is valid

Syntax a = isconnection(conn)

Description a = isconnection(conn) returns 1 if the database connection conn is
valid, or returns 0 otherwise, where conn was created using database.

Examples Type

a = isconnection(conn)

and MATLAB returns

a =
1

indicating that the database connection conn is valid.

See Also database, isreadonly, ping

5-62

isdriver

Purpose Detect whether driver is valid JDBC driver object

Syntax a = isdriver(d)

Description a = isdriver(d) returns 1 if d is a valid JDBC driver object, or
returns 0 otherwise, where d was created using driver.

Examples Type

a = isdriver(d)

and MATLAB returns

a =
1

indicating that the database driver object d is valid.

See Also driver, get, isjdbc, isurl

5-63

isjdbc

Purpose Detect whether driver is JDBC compliant

Syntax a = isjdbc(d)

Description a = isjdbc(d) returns 1 if the driver object d is JDBC compliant, or
returns 0 otherwise, where d was created using driver.

Examples Type

a = isjdbc(d)

and MATLAB returns

a =
1

indicating that the database driver object d is JDBC compliant.

See Also driver, get, isdriver, isurl

5-64

isnullcolumn

Purpose Detect whether last record read in resultset was NULL

Syntax a = isnullcolumn(rset)

Description a = isnullcolumn(rset) returns 1 if the last record read in the
resultset rset, was NULL, and returns 0 otherwise.

Examples Example 1 — Result Is Not NULL

Type

curs = fetch(curs,1);
rset = resultset(curs);
isnullcolumn(rset)

MATLAB returns

ans =
0

indicating that the last record of data retrieved was not NULL. To verify
this, type

curs.Data

MATLAB returns

ans =
[1400]

Example 2 — Result Is NULL

curs = fetch(curs,1);
rset = resultset(curs);
isnullcolumn(rset)

5-65

isnullcolumn

MATLAB returns

ans =
1

indicating that the last record of data retrieved was NULL. To verify
this, type

curs.Data

MATLAB returns

ans =
[NaN]

See Also get, resultset

5-66

isreadonly

Purpose Detect whether database connection is read only

Syntax a = isreadonly(conn)

Description a = isreadonly(conn) returns 1 if the database connection conn
is read only, or returns 0 otherwise, where conn was created using
database.

Examples Type

a = isreadonly(conn)

and MATLAB returns

a =
1

indicating that the database connection conn is read only. Therefore,
you cannot perform fastinsert, insert, or update functions for this
database.

See Also database, isconnection

5-67

isurl

Purpose Detect whether database URL is valid

Syntax a = isurl('s', d)

Description a = isurl('s', d) returns 1 if the database URL s, for the driver
object d, is valid, or returns 0 otherwise. The URL s is of the form
jdbc:odbc:name or name, and d is the driver object created using driver.

Examples Type

a = isurl('jdbc:odbc:thin:@144.212.123.24:1822:', d)

and MATLAB returns

a =
1

indicating that the database URL,
jdbc:odbc:thin:@144.212.123.24:1822:, is valid for
driver object d.

See Also driver, get, isdriver, isjdbc

5-68

logintimeout

Purpose Set or get time allowed to establish database connection

Syntax timeout = logintimeout('driver', time)
timeout = logintimeout(time)
timeout = logintimeout('driver')
timeout = logintimeout

Description timeout = logintimeout('driver', time) sets the amount of
time, in seconds, allowed for a MATLAB session to try to connect to a
database via the specified JDBC driver. Use logintimeout before
running the database function. If MATLAB cannot connect within
the allowed time, it stops trying.

timeout = logintimeout(time) sets the amount of time, in seconds,
allowed for a MATLAB session to try to connect to a database via an
ODBC connection. Use logintimeout before running the database
function. If MATLAB cannot connect within the allowed time, it stops
trying.

timeout = logintimeout('driver') returns the time, in seconds,
you set previously using logintimeout for the JDBC connection
specified by driver. A returned value of 0 means that the time-out
value has not been set previously; MATLAB stops trying to make a
connection if it is not immediately successful.

timeout = logintimeout returns the time, in seconds, you set
previously using logintimeout for an ODBC connection. A returned
value of 0 means that the time-out value has not been set previously;
MATLAB stops trying to make a connection if it is not immediately
successful.

If you do not use logintimeout and MATLAB tries to connect without
success, your MATLAB session could freeze.

Note On the Macintosh platform, logintimeout is not supported.

5-69

logintimeout

Examples Example 1 — Get Time-Out Value for ODBC Connection

Your database connection is via an ODBC connection. To see the current
time-out value, type

logintimeout

MATLAB returns

ans =
0

The time-out value has not been set.

Example 2 — Set Time-Out Value for ODBC Connection

Set the time-out value to 5 seconds for an ODBC driver. Type

logintimeout(5)

MATLAB returns

ans =
5

Example 3 — Get and Set Time-Out Value for JDBC Connection

Your database connection is via the Oracle JDBC driver. First see what
the current time-out value is. Type

logintimeout('oracle.jdbc.driver.OracleDriver')

MATLAB returns

ans =
0

The time-out value is currently 0. Set the time-out to 5 seconds. Type

timeout = logintimeout('oracle.jdbc.driver.OracleDriver',5)

5-70

logintimeout

MATLAB returns

timeout =
5

Verify the time-out value for the JDBC driver. Type

logintimeout('oracle.jdbc.driver.OracleDriver')

MATLAB returns

ans =
5

See Also database, get, set

5-71

namecolumn

Purpose Map resultset column name to resultset column index

Syntax x = namecolumn(rset, n)

Description x = namecolumn(rset, n) maps a resultset column name n, to its
resultset column index, for the resultset rset, where rset was created
using resultset, and n is a string or cell array of strings containing
the column names. Get the column names for a given cursor using
columnnames.

Examples Type

x = namecolumn(rset, {'DNAME';'LOC'})

MATLAB returns

x =
2 3

In this example, the resultset object is rset. The column names for
which you want the column index are DNAME and LOC. The results show
that DNAME is column 2 and LOC is column 3.

To get the index for only the LOC column, type

x = namecolumn(rset, 'LOC')

See Also columnnames, resultset

5-72

ping

Purpose Status information about database connection

Syntax ping(conn)

Description ping(conn) returns the status information about the database
connection, conn. If the connection is open, ping returns status
information and otherwise it returns an error message.

Examples Example 1 — Get Status Information About ODBC Connection

Type

ping(conn)

where conn is a valid ODBC connection. MATLAB returns

ans =
DatabaseProductName: 'ACCESS'

DatabaseProductVersion: '03.50.0000'
JDBCDriverName: 'JDBC-ODBC Bridge (odbcjt32.dll)'

JDBCDriverVersion: '1.1001 (04.00.4202)'
MaxDatabaseConnections: 64

CurrentUserName: 'admin'
DatabaseURL: 'jdbc:odbc:SampleDB'

AutoCommitTransactions: 'True'

Example 2 — Get Status Information About JDBC Connection

Type

ping(conn)

where conn is a valid JDBC connection.

5-73

ping

MATLAB returns

ans =

DatabaseProductName: 'Oracle'

DatabaseProductVersion: [1x166 char]

JDBCDriverName: 'Oracle JDBC driver'

JDBCDriverVersion: '7.3.4.0.2'

MaxDatabaseConnections: 0

CurrentUserName: 'scott'

DatabaseURL: 'jdbc:oracle:thin:@144.212.123.24:

1822:orcl'AutoCommitTransactions:'True'

Example 3 — Unsuccessful Request for Information About
Connection

Type

ping(conn)

where the database connection conn has been terminated or was not
successful. MATLAB returns

Cannot Ping the Database Connection

See Also database, dmd, get, isconnection, set, supports

5-74

primarykeys

Purpose Primary key information for database table or schema

Syntax k = primarykeys(dbmeta, 'cata', 'sch')
k = primarykeys(dbmeta, 'cata', 'sch', 'tab')

Description k = primarykeys(dbmeta, 'cata', 'sch') returns the primary key
information for all tables in the schema sch, of the catalog cata, for the
database whose database metadata object is dbmeta, where dbmeta
was created using dmd.

k = primarykeys(dbmeta, 'cata', 'sch', 'tab') returns the
primary key information for the table tab, in the schema sch, of the
catalog cata, for the database whose database metadata object is
dbmeta, where dbmeta was created using dmd.

Examples Type

k = primarykeys(dbmeta,'orcl','SCOTT','DEPT')

MATLAB returns

k =
'orcl' 'SCOTT' 'DEPT' 'DEPTNO' '1' 'PK_DEPT'

In this example:

• dbmeta is the database metadata object.

• orcl is the catalog cata.

• SCOTT is the schema sch.

• DEPT is the table tab.

5-75

primarykeys

The results show the primary key information as described in the
following table.

Column Description Value

1 Catalog orcl

2 Schema SCOTT

3 Table DEPT

4 Column name of primary
key

DEPTNO

5 Sequence number within
primary key

1

6 Primary key name PK_DEPT

See Also crossreference, dmd, exportedkeys, get, importedkeys

5-76

procedurecolumns

Purpose Catalog’s stored procedure parameters and result columns

Syntax pc = procedurecolumns(dbmeta, 'cata')
pc = procedurecolumns(dbmeta, 'cata', 'sch')

Description pc = procedurecolumns(dbmeta, 'cata') returns the stored
procedure parameters and result columns for the catalog cata, for the
database whose database metadata object is dbmeta, which was created
using dmd.

pc = procedurecolumns(dbmeta, 'cata', 'sch') returns the
stored procedure parameters and result columns for the schema sch, of
the catalog cata, for the database whose database metadata object is
dbmeta, which was created using dmd.

MATLAB returns one row for each column in the results generated
by running the stored procedure.

Examples Type

pc = procedurecolumns(dbmeta,'tutorial', 'ORG')

where:

• dbmeta is the database metadata object.

• tutorial is the catalog cata.

• ORG is the schema sch.

5-77

procedurecolumns

MATLAB returns

pc =

Columns 1 through 7

[1x19 char] 'ORG' 'display' 'Month' '3' '12' 'TEXT'

[1x19 char] 'ORG' 'display' 'Day' '3' '4' 'INTEGER'

Columns 8 through 13

'50' '50' 'null' 'null' '1' 'null'

'50' '4' 'null' 'null' '1' 'null'

The results show the stored procedure parameter and result
information. Because two rows of data are returned, there will be two
columns of data in the results when you run the stored procedure. From
the results, you can see that running the stored procedure display
returns the Month and Day.

5-78

procedurecolumns

Following is a full description of the procedurecolumns results for the
first row (Month).

Column Description Value for First Row

1 Catalog 'D:\orgdatabase\orcl'

2 Schema 'ORG'

3 Procedure name 'display'

4 Column/parameter name 'MONTH'

5 Column/parameter type '3'

6 SQL data type '12'

7 SQL data type name 'TEXT'

8 Precision '50'

9 Length '50'

10 Scale 'null'

11 Radix 'null'

12 Nullable '1'

13 Remarks 'null'

For more information about the procedurecolumns results, see the
Java Web site for the getProcedureColumns property.

See Also dmd, get, procedures

5-79

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

procedures

Purpose Catalog’s stored procedures

Syntax p = procedures(dbmeta, 'cata')
p = procedures(dbmeta, 'cata', 'sch')

Description p = procedures(dbmeta, 'cata') returns the stored procedures in
the catalog cata, for the database whose database metadata object is
dbmeta, which was created using dmd.

p = procedures(dbmeta, 'cata', 'sch') returns the stored
procedures in the schema sch, of the catalog cata, for the database
whose database metadata object is dbmeta, which was created using
dmd.

Stored procedures are SQL statements that are saved with the
database. You can use the exec function to run a stored procedure,
providing the stored procedure as the sqlquery argument instead of
actually entering the sqlquery statement as the argument.

Examples Type

p = procedures(dbmeta,'DBA')

where dbmeta is the database metadata object and the catalog is DBA.
MATLAB returns the names of the stored procedures

p =
'sp_contacts'
'sp_customer_list'
'sp_customer_products'
'sp_product_info'
'sp_retrieve_contacts'
'sp_sales_order'

5-80

procedures

Execute the stored procedure sp_customer_list for the database
connection conn and fetch all of the data. Type

curs = exec(conn,'sp_customer_list');
curs = fetch(conn)

MATLAB returns

curs =

Attributes: []

Data: {10x2 cell}

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'sp_customer_list'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

View the results by typing

curs.Data

MATLAB returns

ans =
[101] 'The Power Group'
[102] 'AMF Corp.'
[103] 'Darling Associates'
[104] 'P.S.C.'
[105] 'Amo & Sons'
[106] 'Ralston Inc.'
[107] 'The Home Club'
[108] 'Raleigh Co.'
[109] 'Newton Ent.'
[110] 'The Pep Squad'

5-81

procedures

See Also dmd, exec, get, procedurecolumns

5-82

querybuilder

Purpose Start SQL query builder GUI to import and export data

Syntax querybuilder

Description querybuilder starts the Visual Query Builder (VQB), an easy-to-use
interface for building and running SQL queries to exchange data with
databases.

Examples For examples of and more information about using the Visual Query
Builder, use the VQB Help menu or see Chapter 2, “Visual Query
Builder”. You can also get help in any of the Visual Query Builder dialog
boxes by clicking the Help button in the dialog box.

5-83

querytimeout

Purpose Time allowed for database SQL query to succeed

Syntax timeout = querytimeout(curs)

Description timeout = querytimeout(curs) returns the amount of time, in
seconds, allowed for an SQL query of curs to succeed, where curs is
created by running exec. If a query cannot be completed in the allowed
time, MATLAB stops trying to perform the exec. The time-out value is
defined for a database by the database administrator. If the time-out
value is zero, a query must be completed immediately.

Examples Get the current database time-out setting for curs.

querytimeout(curs)
ans =

10

Limitations If a database does not have a database time-out feature, MATLAB
returns

[Driver]Driver not capable

The Microsoft Access ODBC driver and Oracle ODBC driver do not
support querytimeout.

See Also exec

5-84

register

Purpose Load database driver

Syntax register(d)

Description register(d) loads the database driver object d, which was created
using driver. Use unregister to unload the driver.

Although database automatically loads the driver, register allows
you to use get to view properties of the driver before connecting. The
register function also allows you to use drivermanager with set and
get for properties for all loaded drivers.

Examples register(d) loads the database driver object d.

get(d) returns properties of the driver object.

See Also driver, drivermanager, get, set, unregister

5-85

resultset

Purpose Construct resultset object

Syntax r = resultset(curs)

Description r = resultset(curs) creates a resultset object rset, for the cursor
curs, where curs was created using exec or fetch. You can get
properties of rset, create a resultset metadata object using rsmd, or
make calls to rset using your own Java-based applications. You can also
perform other functions on rset—clearwarnings, isnullcolumn, and
namecolumn. Use close to close the resultset, which frees up resources.

Examples Type

rset = resultset(curs)

MATLAB returns

rset =
Handle: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

See Also clearwarnings, close, exec, fetch, get, isnullcolumn, namecolumn,
rsmd

5-86

rollback

Purpose Undo database changes

Syntax rollback(conn)

Description rollback(conn) reverses changes made via fastinsert, insert, or
update to the database connection conn. The rollback function reverses
all changes made since the last commit or rollback, or the last exec
that performed a commit or rollback. The AutoCommit flag for conn
must be off to use rollback.

Examples Ensure the AutoCommit flag for connection conn is off by typing

get(conn,'AutoCommit')

MATLAB returns

ans =
off

Insert the data contained in exdata into the columns DEPTNO, DNAME,
and LOC, in the table DEPT, for the data source conn. Type

fastinsert(conn, 'DEPT', {'DEPTNO';'DNAME';'LOC'}, exdata)

Roll back the data inserted in the database by typing

rollback(conn)

The data in exdata is removed from the database so the database
contains the same data it did before the fastinsert.

See Also commit, database, exec, fastinsert, get, insert, update

5-87

rows

Purpose Number of rows in fetched data set

Syntax numrows = rows(curs)

Description numrows = rows(curs) returns the number of rows in the fetched
data set curs.

Examples There are four rows in the fetched data set curs.

numrows = rows(curs)

numrows =
4

To see the four rows of data in curs, type

curs.Data

MATLAB returns

ans =
'Germany'
'Mexico'
'France'
'Canada'

See Also cols, fetch, get, rsmd

5-88

rsmd

Purpose Construct resultset metadata object

Syntax rsmeta = rsmd(rset)

Description rsmeta = rsmd(rset) creates a resultset metadata object rsmeta, for
the resultset object rset, or the cursor object curs, where rset was
created using resultset, and curs was created using exec or fetch.
Get properties of rsmeta using get, or make calls to rsmeta using your
own Java-based applications.

Examples Type

rsmeta=rsmd(rset)

MATLAB returns

rsmeta =
Handle: [1x1 sun.jdbc.odbc.JdbcOdbcResultSetMetaData]

Use v = get(rsmeta) and v.property to see properties of the resultset
metadata object.

See Also exec, get, resultset

5-89

set

Purpose Set properties for database, cursor, or drivermanager object

Syntax set(object, 'property', value)
set(object)

Description set(object, 'property', value) sets the value of property to value
for the specified object.

set(object) displays all properties for object.

Allowable values you can set for object are

• “Database Connection Object” on page 5-91, created using database

• “Cursor Object” on page 5-92, created using exec or fetch

• “Drivermanager Object” on page 5-92, created using drivermanager

Not all databases allow you to set all of these properties. If your
database does not allow you to set a particular property, you will receive
an error message when you try to do so.

5-90

set

Database Connection Object

The allowable values for property and value for a database connection
object are listed in the following table.

Property Value Description

'on' Database data is written
and committed automatically
when you run a fastinsert,
insert, or update function.
You cannot use rollback
to reverse it and you do
not need to use commit
because the data is committed
automatically.

'AutoCommit'

'off' Database data is not
committed automatically
when you run a fastinsert,
insert, or update function.
In this case, after you run
fastinsert, insert, or
update, you can use rollback
to reverse it. When you are
sure the data is correct, follow
a fastinsert, insert, or
update with a commit.

0 Not read only, that is, writable'ReadOnly'

1 Read only

'TransactionIsolation' positive
integer

Current transaction isolation
level

Note that if you do not run commit after running an update,
fastinsert, or insert function, and then close the database connection
using close, the data usually is committed automatically at that time.

5-91

set

Your database administrator can tell you how your database deals with
this.

Cursor Object

The allowable property and value for a cursor object are listed in the
following table.

Property Value Description

'RowLimit' positive
integer

Sets the RowLimit for fetch.
This is an alternative to defining
the RowLimit as an argument of
fetch. Note that the behavior of
fetch when you define RowLimit
using set differs depending on the
database.

Drivermanager Object

The allowable property and value for a drivermanager object are
listed in the following table.

Property Value Description

'LoginTimeout' positive integer Sets the logintimeout
value for the set
of loaded database
drivers as a whole.

For command line help on set, use the overloaded methods.

help cursor/set
help database/set
help drivermanager/set

5-92

set

Examples Example 1 — Set RowLimit for Cursor

This example uses set to define the RowLimit. It establishes a JDBC
connection, retrieves all data from the EMP table, sets the RowLimit to 5,
and uses fetch with no arguments to retrieve the data.

Only five rows of data are returned by fetch.

conn=database('orcl','scott','tiger',...

'oracle.jdbc.driver.OracleDriver',...

'jdbc:oracle:thin:@144.212.123.24:1822:');

curs=exec(conn, 'select * from EMP');

set(curs, 'RowLimit', 5)

curs=fetch(curs)

curs =

Attributes: []

Data: {5x8 cell}

DatabaseObject: [1x1 database]

RowLimit: 5

SQLQuery: 'select * from EMP'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 oracle.jdbc.driver.OracleResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 oracle.jdbc.driver.OracleStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

As seen above, the RowLimit property of curs is now 5 and the Data
property is 5x8 cell, meaning five rows of data were returned.

For the database in this example, the RowLimit acts as the maximum
number of rows you can retrieve. Therefore, if you run the fetch
function again, no data is returned.

5-93

set

Example 2 — Set AutoCommit Flag to On for Connection

This example shows a database update when the AutoCommit flag is
on. First determine the status of the AutoCommit flag for the database
connection conn.

get(conn, 'AutoCommit')

ans =
off

The flag is off.

Set the flag status to on and verify it.

set(conn, 'AutoCommit', 'on');
get(conn, 'AutoCommit')

ans =
on

Insert data, cell array exdata, into the column names colnames, of
the Growth table.

fastinsert(conn, 'Growth', colnames, exdata)

The data is inserted and committed.

Example 3 — Set AutoCommit Flag to Off for Connection and
Commit Data

This example shows a database fastinsert when the AutoCommit flag
is off and the data is then committed. First set the AutoCommit flag to
off for database connection conn.

set(conn, 'AutoCommit', 'off');

5-94

set

Insert data, cell array exdata, into the column names colnames, of the
Avg_Freight_Cost table.

fastinsert(conn, 'Avg_Freight_Cost', colnames, exdata)

Commit the data.

commit(conn)

Example 4 — Set AutoCommit Flag to Off for Connection and
Roll Back Data

This example shows a database update when the AutoCommit flag is
off and the data is then rolled back. First set the AutoCommit flag to
off for database connection conn.

set(conn, 'AutoCommit', 'off');

Update the data in the column names specified by colnames, of the
Avg_Freight_Weight table, for the record selected by whereclause,
using data contained in cell array exdata.

update(conn, 'Avg_Freight_Weight', colnames, exdata,
whereclause)

The data was written but not committed.

Roll back the data.

rollback(conn)

The data in the table is now the same as it was before update was run.

Example 5 — Set LoginTimeout for Drivermanager Object

In this example, create a drivermanager object dm, and set the
LoginTimeout value to 3 seconds. Type:

dm = drivermanager;
set(dm,'LoginTimeout',3);

5-95

set

To verify the result, type

logintimeout

MATLAB returns

ans =
3

See Also database, drivermanager, exec, fastinsert, fetch, get, insert,
logintimeout, ping, update

5-96

setdbprefs

Purpose Set preferences for retrieval format, errors, NULLs, and JDBC MAT-file
location

Graphical
Interface

As an alternative to the setdbprefs function, you can select
Preferences from the Visual Query Builder Query menu and use
the Preferences dialog box.

Syntax setdbprefs
setdbprefs('property')
setdbprefs('property', 'value')
setdbprefs({'property1'; ... }, {'value1';
... })

Description setdbprefs returns the current values for database action preferences.

setdbprefs('property') returns the current preference value for the
specified property.

setdbprefs('property', 'value') sets the specified preference
property to value for the current MATLAB session. Include the
statement in a MATLAB startup file to set preferences automatically
for the session when MATLAB starts.

setdbprefs({'property1'; ... }, {'value1'; ... }) for the
properties starting with property1, sets the preference values starting
with value1, for the current session.

Allowable properties are listed in the following table.

5-97

setdbprefs

Allowable
Properties Allowable Values Description

'cellarray' (default),
'numeric', or
'structure'

Format for data imported into
MATLAB. Select a value based on the
type of data you are importing, memory
considerations, and your preferred
method of working with retrieved data.
Set the value before using fetch.

'cellarray' (default) Imports data into MATLAB cell
arrays. Use for nonnumeric data types.
Requires substantial system memory
when retrieving large amounts of
data. Has slower performance than
numeric format. To address memory
problems, use the RowLimit option with
fetch. For more information about cell
arrays, see “Working with Cell Arrays
in MATLAB” on page 3-39.

'numeric' Imports data into a MATLAB matrix
of doubles. Nonnumeric data types
are considered to be NULL numbers
and are shown as specified for the
NullNumberRead property. Uses less
system memory and offers better
performance than the cellarray
format. Use only when data to be
retrieved is in numeric format, or when
the nonnumeric data retrieved is not
relevant.

'DataReturnFormat'

'structure' Imports data as a MATLAB structure.
Can use for all data types. Makes it
easy to work with returned columns.
Requires substantial system memory
when retrieving large amounts of
data. Has slower performance than
numeric format. To address memory
problems, use the RowLimit option
with fetch. For more information on
using structures, see MATLAB Data
Types in the MATLAB Programming
documentation.5-98

setdbprefs

Allowable
Properties Allowable Values Description

'store' (default),
'report', or 'empty'

Behavior for handling errors when
importing data. Set the value before
running exec.

'store' (default) Any errors from running database
are stored in the Message field of the
returned connection object. Any errors
from running exec are stored in the
Message field of the returned cursor
object.

'report' Any errors from running database
or exec display immediately in the
Command Window.

'ErrorHandling'

'empty' Any errors from running database
are stored in the Message field of the
returned connection object. Any errors
from running exec are stored in the
Message field of the returned cursor
object. Objects that cannot be created
are returned as empty handles, [].

'NullNumberRead' User-specified, for
example, '0'

How NULL numbers in a database
are represented when imported into
MATLAB. NaN is the default value.
Cannot specify a string value, such as
'NULL', if 'DataReturnFormat' is set to
'numeric'. Set the value before using
fetch.

'NullNumberWrite' User-specified, for
example, 'NaN'

Any numbers in the specified format,
for example, NaN are represented as
NULL when exported to a database. NaN
is the default value.

5-99

setdbprefs

Allowable
Properties Allowable Values Description

'NullStringRead' User-specified, for
example, 'null'

How NULL strings in a database are
represented when imported into
MATLAB. NaN is the default value. Set
the value before using fetch.

'NullStringWrite' User-specified, for
example, 'NULL'

Any strings in the specified format, for
example, NaN, are represented as NULL
when exported to a database. NaN is the
default value.

'JDBCDataSourceFile' User-specified,
for example,
'D:/file.mat'

Full pathname to MAT-file containing
JDBC data sources defined using Visual
Query Builder. For more information,
see “Define a JDBC Data Source in the
Visual Query Builder” on page 1-22.
The graphical interface for setting
this preference is in the VQB: select
Query > Define JDBC Data Source,
and then click Use Existing File. If
the VQB is open, close it and reopen
it to use the data source specified via
setdbprefs.

Remarks When you run clear all, the setdbprefs values are cleared and
return to default values. It is a good practice to set or verify the
setdbprefs values before each fetch.

5-100

setdbprefs

Examples Example 1 — Display Current Values

Type setdbprefs and MATLAB returns

DataReturnFormat: 'cellarray'
ErrorHandling: 'store'

NullNumberRead: 'NaN'
NullNumberWrite: 'NULL'
NullStringRead: 'null'

NullStringWrite: 'null'

This specifies that

• Data is imported into MATLAB cell arrays.

• Any errors that occur during a connection or an SQL query are stored
in the Message field of the connection or cursor data object.

• Any NULL number in the database is read into MATLAB as NaN.
Any NaN number in MATLAB is exported to the database as a NULL
number. Any NULL string in the database is read into MATLAB as
'null'. Any 'null' string in MATLAB is exported to the database
as a NULL string.

Example 2 — Change a Value

Type setdbprefs ('NullNumberRead') and MATLAB returns

NullNumberRead: 'NaN'

This specifies that any NULL number in the database is read into
MATLAB as NaN.

To change the value to 0, type

setdbprefs ('NullNumberRead', '0')

This specifies that any NULL number in the database is read into
MATLAB as 0.

5-101

setdbprefs

Example 3 — Change the DataReturnFormat

Cell array: to specify the cellarray format, type

setdbprefs ('DataReturnFormat','cellarray')

This specifies that data is imported into MATLAB cell arrays. The
following illustrates a subsequent import.

conn = database('SampleDB', '', '');
curs=exec(conn, ...
'select all ProductName,UnitsInStock fromProducts');

curs=fetch(curs,3);
curs.Data
ans =

'Chai' [39]
'Chang' [17]
'Aniseed Syrup' [13]

Numeric: Specify the numeric format by typing

setdbprefs ('DataReturnFormat','numeric')

Performing the same set of import functions used in the cell array
example results in

curs.Data
ans =

NaN 39
NaN 17
NaN 13

In the database, the values for ProductName are all character strings,
as seen in the previous results when DataReturnFormat is set to
cellarray. The ProductName values cannot be read when they are
imported using the numeric format. Therefore, MATLAB treats them
as NULL numbers and assigns them as NaN, which is the current value
for the NullNumberRead property of setdbprefs in this example.

5-102

setdbprefs

Structure: Specify the structure format by typing

setdbprefs ('DataReturnFormat','structure')

Performing the same set of import functions used in the cell array
example results in

curs.Data
ans =

ProductName: {3x1 cell}
UnitsInStock: [3x1 double]

View the contents of the structure to see the data.

curs.Data.ProductName
ans =

'Chai'
'Chang'
'Aniseed Syrup'

curs.Data.UnitsInStock
ans =

39
17
13

Example 4 — Change the Write Format for NULL Numbers

To specify the NullNumberWrite format as NaN, type

setdbprefs('NullNumberWrite', 'NaN')

This specifies that any numbers represented as NaN in MATLAB are
exported to a database as NULL.

For example, the variable ex_data, contains a NaN

ex_data =
'09-24-2003' NaN

5-103

setdbprefs

Executing a fastinsert for ex_data will export the NaN as NULL as in

fastinsert (conn, 'Avg_Freight_Cost', colnames, ex_data)

Change the NullNumberWrite value to Inf.

setdbprefs('NullNumberWrite', 'Inf')

Attempt to insert ex_data, which contains a NaN. MATLAB does not
recognize the NaN in ex_data and generates an error.

fastinsert(conn, 'Avg_Freight_Cost', colnames, ex_data
??? Error using ==> fastinsert
[Microsoft][ODBC Microsoft Access Driver]
Too few parameters.
Expected 1.

Example 5 — Change the ErrorHandling

Store: To specify the store format, type

setdbprefs ('ErrorHandling','store')

This specifies that any errors from running database or exec are stored
in the Message field of the returned connection or cursor object.

5-104

setdbprefs

The following illustrates an example of trying to fetch from a closed
cursor with the store option for ErrorHandling.

conn=database('SampleDB', '', '');

curs=exec(conn, 'select all ProductName from Products');

close(curs)

curs=fetch(curs,3);

curs=

Attributes: []

Data: 0

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select all ProductName from Products'

Message: 'Error: Invalid cursor'

Type: 'Database Cursor Object'

ResultSet: 0

Cursor: 0

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

The error indication appears in the Message field.

5-105

setdbprefs

Report: To specify the report format, type

setdbprefs ('ErrorHandling','report')

This specifies that any errors from running database or exec display
immediately in the Command Window.

The following illustrates the same example as above when trying to use
fetch from a closed cursor with the report option for ErrorHandling.

conn = database('SampleDB', '', '');
curs=exec(conn, 'select all ProductName from Products');
close(curs)
curs=fetch(curs,3);
??? Error using ==> cursor/fetch (errorhandling)
Invalid Cursor
Error in ==>
D:\matlab\toolbox\database\database\@cursor\fetch.m

On line 36 ==> errorhandling(initialCursor.Message);

The error indication appears immediately in the Command Window.

5-106

setdbprefs

Empty: To specify the empty format, type

setdbprefs ('ErrorHandling','empty')

This specifies that any errors from running database or exec are stored
in the Message field of the returned connection or cursor object. In
addition, objects that cannot be created are returned as empty handles,
[].

The following illustrates the same example as above when trying to use
fetch from a closed cursor with the empty option for ErrorHandling.

conn = database('SampleDB', '', '');

curs=exec(conn, 'select all ProductName from Products');

close(curs)

curs=fetch(curs,3);

curs =

Attributes: []

Data: []

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select all ProductName from Products'

Message: 'Invalid Cursor'

Type: 'Database Cursor Object'

ResultSet: 0

Cursor: 0

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

The error indication appears in the cursor object Message field. In
addition, the Attributes field returned empty handles because no
attributes could be created.

5-107

setdbprefs

Example 6 — Change Multiple Settings

Type

setdbprefs({'NullStringRead';'DataReturnFormat'},...
{'NaN';'numeric'})

This specifies that any NULL string in the database is read into MATLAB
as 'NaN', and data is retrieved into a matrix of doubles.

Example 7 — Specify JDBC Data Sources

Type

setdbprefs('JDBCDataSourceFile',...
'D:/Work/myjdbcdatasources.mat')

to instruct the VQB to use the data sources specified in the file
myjdbcdatsources.mat, where myjdbcdatasources.mat was defined
in the VQB using Query > Define JDBC Data Source.

See Also clear, fetch

5-108

sql2native

Purpose Convert JDBC SQL grammar to system’s native SQL grammar

Syntax n = sql2native(conn, 'sqlquery')

Description n = sql2native(conn, 'sqlquery') for the connection conn, which
was created using database, converts the SQL statement string
sqlquery. The string is converted from JDBC SQL grammar into the
database system’s native SQL grammar, returning the native SQL
statement to n.

5-109

supports

Purpose Detect whether property is supported by database metadata object

Syntax a = supports(dbmeta)
a = supports(dbmeta, 'property')
a.property

Description a = supports(dbmeta) returns a structure of the properties of dbmeta,
which was created using dmd, and the corresponding property values,
1 or 0, where 1 means the property is supported and 0 means the
property is not supported.

a = supports(dbmeta, 'property') returns the value, 1 or 0, of
property for dbmeta, which was created using dmd, where 1 means the
property is supported and 0 means the property is not supported.

a.property returns the value of property, after you create a using
supports.

There are dozens of properties for dbmeta. Examples include 'GroupBy'
and 'StoredProcedures'.

Examples Type

a = supports(dbmeta, 'GroupBy')

and MATLAB returns

a =
1

indicating that the database supports the use of SQL group-by clauses.

To find the GroupBy value as well as values for all other properties, type

a = supports(dbmeta)

5-110

supports

MATLAB returns a list of properties and their values. The GroupBy
property is included in the list. You can also see its value by typing

a.GroupBy

to which MATLAB returns

a =
1

See Also database, dmd, get, ping

5-111

tableprivileges

Purpose Database table privileges

Syntax tp = tableprivileges(dbmeta, 'cata')
tp = tableprivileges(dbmeta, 'cata', 'sch')
tp = tableprivileges(dbmeta, 'cata', 'sch', 'tab')

Description tp = tableprivileges(dbmeta, 'cata') returns the list of table
privileges for all tables in the catalog cata, for the database whose
database metadata object is dbmeta, where dbmeta was created using
dmd.

tp = tableprivileges(dbmeta, 'cata', 'sch') returns the list of
table privileges for all tables in the schema sch, of the catalog cata, for
the database whose database metadata object is dbmeta, where dbmeta
was created using dmd.

tp = tableprivileges(dbmeta, 'cata', 'sch', 'tab') returns
the list of privileges for the table tab, in the schema sch, of the catalog
cata, for the database whose database metadata object is dbmeta,
where dbmeta was created using dmd.

Examples Type

tp = tableprivileges(dbmeta,'msdb','geck', 'builds')

MATLAB returns

tp =

'DELETE' 'INSERT' 'REFERENCES' 'SELECT' 'UPDATE'

5-112

tableprivileges

In this example:

• dbmeta is the database metadata object.

• msdb is the catalog cata.

• geck is the schema sch.

• builds is the table tab.

The results show the set of privileges.

See Also dmd, get, tables

5-113

tables

Purpose Database table names

Syntax t = tables(dbmeta, 'cata')
t = tables(dbmeta, 'cata', 'sch')

Description t = tables(dbmeta, 'cata') returns the list of all tables and their
table types in the catalog cata, for the database whose database
metadata object is dbmeta, where dbmeta was created using dmd.

t = tables(dbmeta, 'cata', 'sch') returns the list of tables and
table types in the schema sch, of the catalog cata, for the database
whose database metadata object is dbmeta, where dbmeta was created
using dmd.

For command line help on tables, use the overloaded method

help dmd/tables

Examples Type

t = tables(dbmeta,'orcl', 'SCOTT')

MATLAB returns

t =
'BONUS' 'TABLE'
'DEPT' 'TABLE'
'EMP' 'TABLE'
'SALGRADE' 'TABLE'
'TRIAL' 'TABLE'

5-114

tables

In this example:

• dbmeta is the database metadata object.

• orcl is the catalog cata.

• SCOTT is the schema sch.

The results show the names and types of the five tables.

See Also attr, bestrowid, dmd, get, indexinfo, tableprivileges

5-115

unregister

Purpose Unload database driver

Syntax unregister(d)

Description unregister(d) unloads the database driver object d, which was loaded
using register. Running unregister frees up system resources. If you
do not use unregister to unload a registered driver, it automatically
unloads when you end the MATLAB session.

Examples unregister(d) unloads the database driver object d.

See Also register

5-116

update

Purpose Replace data in database table with data from MATLAB

Syntax update(conn, 'tab', colnames, exdata, 'whereclause')

update(conn, 'tab', colnames, ...

{datA,datAA,...; datB,datBB,...; datn,datnn}, ...

{'where col1 = val1'; where col2 = val2'; ... 'where coln = valn'}

Description update(conn, 'tab', colnames, exdata, 'whereclause') exports
data from the MATLAB variable exdata, into the database table tab,
via the database connection conn. The variable exdata can be a cell
array, numeric matrix, or structure. You do not define the type of data
you are exporting; the data is exported in its current MATLAB format.
Existing records in the table are replaced as specified by the SQL
command whereclause. Specify the column names for tab as strings in
the MATLAB cell array, colnames. If exdata is a structure, field names
in the structure must exactly match colnames.

The status of the AutoCommit flag determines if update automatically
commits the data or if a commit is needed. View the AutoCommit flag
status for the connection using get and change it using set. Commit
the data using commit or issue an SQL commit statement via the exec
function. Roll back the data using rollback or issue an SQL rollback
statement via the exec function.

To add new rows instead of replacing existing data, use fastinsert.

update(conn, 'tab', colnames, {datA,datAA,...;
datB,datBB,...; datn,datnn}, {'where col1 = val1'; where
col2 = val2'; ... 'where coln = valn'}) exports multiple
records based on n different where clauses. The number of where
clauses must equal n, the number of records in exdata, n.

Remarks Do not count on the order of records in your database as being constant,
but rather always use the values in column names to identify records.

If you get an error, it might be because the table is open in design
mode in Access (edit mode for other databases). Close the table in the

5-117

update

database and repeat the fastinsert function. For example, the error
might be

[Vendor][ODBC Product Driver] The database engine could
not lock table 'TableName' because it is already in use
by another person or process.

If you get this error

??? Error using ==> database.update
Error:Commit/Rollback Problems

it could be because you are trying to perform an update identical to one
you just performed.

Examples Example 1 — Update a Record

In the Birthdays table, update the record where First_Name is Jean,
replacing the current value for Age with the new value, 40. The
connection is conn.

Define a cell array containing the column name you are updating, Age.

colnames = {'Age'}

Define a cell array containing the new data.

exdata(1,1) = {40}

Perform the update.

update(conn, 'Birthdays', colnames, exdata, ...
'where First_Name = ''Jean''')

5-118

update

Example 2 — Update Followed by rollback

This example shows a database update when the AutoCommit flag is
off and the data is then rolled back. First set the AutoCommit flag to
off for database connection conn.

set(conn, 'AutoCommit', 'off')

Update the data in the column Date of the Error_Rate table for the
record selected by whereclause using data contained in the cell array
exdata.

update(conn, 'Error_Rate', {'Date'}, exdata, whereclause)

The data was written, but not committed.

Roll back the data.

rollback(conn)

The update was reversed; the data in the table is the same as it was
before update was run.

Example 3 — Update Multiple Records Using Different
Constraints

Given the following data in the table TeamLeagues, where the column
names are 'Team', 'Zip_Code', and 'New_League'

'Team1' 02116
'Team2' 02138
'Team3' 02116

assign teams with a zip code of 02116 to the A league and teams with a
zip code of 02138 to the B league:

update(conn, 'TeamLeagues', {'League'}, {'A';'B'}, ...
{'where Zip_Code =''02116''';'where Zip_Code =''02138'''})

See Also commit, database, fastinsert, rollback, set

5-119

versioncolumns

Purpose Automatically updated table columns

Syntax vl = versioncolumns(dbmeta, 'cata')
vl = versioncolumns(dbmeta, 'cata', 'sch')
vl = versioncolumns(dbmeta, 'cata', 'sch', 'tab')

Description vl = versioncolumns(dbmeta, 'cata') returns the list of all
columns that are automatically updated when any row value is updated,
for the catalog cata, for the database whose database metadata object
is dbmeta, where dbmeta was created using dmd.

vl = versioncolumns(dbmeta, 'cata', 'sch') returns the list of
all columns that are automatically updated when any row value is
updated, for the schema sch, in the catalog cata, for the database
whose database metadata object is dbmeta, where dbmeta was created
using dmd.

vl = versioncolumns(dbmeta, 'cata', 'sch', 'tab') returns the
list of all columns that are automatically updated when any row value
is updated, in the table tab, for the schema sch, in the catalog cata, for
the database whose database metadata object is dbmeta, where dbmeta
was created using dmd.

Examples Type

vl = versioncolumns(dbmeta,'orcl','SCOTT','BONUS','SAL')

MATLAB returns

vl =
{}

5-120

versioncolumns

In this example:

• dbmeta is the database metadata object.

• orcl is the catalog cata.

• SCOTT is the schema sch.

• BONUS is the table tab.

• SAL is the column name l.

The results show an empty set, meaning no columns automatically
update when any row value is updated.

See Also columns, dmd, get

5-121

width

Purpose Field size of column in fetched data set

Syntax colsize = width(cursor, colnum)

Description colsize = width(cursor, colnum) returns the field size of the
specified column number colnum, in the fetched data set curs.

Examples Get the width of the first column of the fetched data set, curs:

colsize = width(curs, 1)

colsize =

11

The field size of column one is 11 characters (bytes).

See Also attr, cols, columnnames, fetch, get

5-122

A

Examples

Use this list to find examples in the documentation.

A Examples

Setting Up a Data Source
“Setting Up a Data Source for ODBC Drivers” on page 1-12
“Setting Up a Data Source for JDBC Drivers” on page 1-19

Visual Query Builder GUI: Importing Data
“Building and Executing a Query” on page 2-8
“Specifying Preferences for NULLS, Data Format, and Error Handling”
on page 2-15
“Retrieving Unique Occurrences” on page 2-32
“Retrieving Information That Meets Specified Criteria” on page 2-34
“Creating Subqueries for Values from Multiple Tables” on page 2-45
“Creating Queries for Results from Multiple Tables” on page 2-50
“Retrieving Images in Data” on page 2-55
“Importing BOOLEAN Data” on page 2-62

Visual Query Builder GUI: Displaying Results
“Relational Display of Data” on page 2-19
“Chart Display of Results” on page 2-23
“Report Display of Results in a Table” on page 2-26
“Customized Display of Results in the Report Generator” on page 2-28
“Presenting Results in Specified Order” on page 2-42

Visual Query Builder GUI: Exporting Data
“Exporting Data Using the VQB” on page 2-57
“Exporting BOOLEAN Data” on page 2-65

A-2

Using Database Toolbox Functions

Using Database Toolbox Functions
“Importing Data into MATLAB from a Database” on page 3-3
“Viewing Information About the Imported Data” on page 3-9
“Exporting Data from MATLAB to a New Record in a Database” on page
3-12
“Replacing Existing Data in a Database from MATLAB” on page 3-17
“Exporting Multiple New Records from MATLAB” on page 3-19
“Retrieving BINARY or OTHER Java SQL Data Types” on page 3-24
“Accessing Metadata” on page 3-26
“Performing Driver Functions” on page 3-33
“Working with Cell Arrays in MATLAB” on page 3-39

A-3

A Examples

A-4

Index

Index[] 3-43
{ } for accessing data 3-43

A
Advanced query options in VQB 2-32
All option in VQB 2-32
annotation

chart 2-25
display 2-22

array
data format 5-97
data format in VQB 2-16

attr 5-2
example 3-10

Attributes 5-49
attributes of data

attr function 5-2
example 3-10

AutoCommit
example 3-14
setting status 5-91
status via get 5-48

B
bestrowid 5-4
Binary data type 1-10
BINARY data type

retrieving with functions 3-24
retrieving with VQB 2-55

BLOB data types 1-10
BOOLEAN data type

inserting 5-40
retrieving 5-46
VQB 2-62

braces, curly 3-43
brackets, square 3-43
bridge, JDBC/ODBC 1-8

C
Catalog 5-48
catalog, changing 5-32
CatalogName 5-52
cell arrays

assigning values to cells 3-13
data format 5-97
Database Toolbox 3-39
for exporting data 3-14
for query results 3-6
setting data format in VQB 2-15

celldisp 3-43
charting

query results 2-23
Charting dialog box 2-23

data (x, y, z, and color) 2-24
Display 2-25
legend 2-24
preview 2-24
types of charts 2-23

classpath.txt file 1-20
clearing variables from Data area 2-14
clearwarnings 5-5
close 5-6

example 3-11
cols 5-8

example 3-10
ColumnCount 5-52
ColumnName 5-52
columnnames 5-9

exporting example 3-20
importing example 3-10

columnprivileges 5-10
columns 5-12

attributes 3-10
automatically updated 5-120
cross reference 5-17
exported keys 5-33
foreign key information 5-56
imported key information 5-56

Index-1

Index

names, exporting 3-14
names, importing 3-10
names, via attr 5-2
names, via columnnames 5-9
names, via columns 5-12
number 5-8
optimal set to identify row 5-4
primary key information 5-75
privileges 5-10
viewing width 3-10
width 5-122

ColumnTypeName 5-52
columnWidth 5-2
commit 5-14

example 3-14
via exec 5-31

Condition in VQB 2-34
confds

function reference 5-15
Configure Data Source dialog box 5-15
connection

clearing warnings for 5-5
close function 5-6
closing 3-11
creating 5-20
database, opening (establishing) 5-20
database, opening (establishing),

example 3-4
information 5-73
JDBC 5-48
messages 5-48
object 3-4
opening 5-20
properties, getting 5-47
properties, setting 5-90
read-only 5-67
status 5-73
status, example 3-5
time allowed for 5-69
time allowed for, example 3-3

validity 5-62
warnings 5-48

constructor functions 3-36
converting numeric array to cell array 3-45
crossreference 5-17
currency 5-2
Current clauses area in VQB

example 2-35
cursor

attributes 5-49
close function 5-6
closing 3-11
creating via exec 5-28
creating via fetch 5-41
data element 5-49
error messages 5-49
importing data 3-6
object 5-41

example 3-5
opening 3-5
properties 5-90
properties, example 5-47
resultset object 5-86

Cursor 5-49

D
data

attributes 5-2
example 3-10

cell array 3-14
column names 5-9

example 3-10
column numbers 5-8

example 3-10
commit function 5-14
committing 5-91
displaying results in VQB 2-19
exporting 5-36 5-61
exporting, example 3-15

Index-2

Index

field names 5-9
importing 5-41
importing, example 3-6
information about 3-9
inserting into database 3-22
replacing 3-17
restrictions 1-7
retrieving from cell array 3-42
rolling back 5-87
rolling back, via set 5-91
rows 3-9
rows function 5-88
types 1-3
updating 5-117

Data 5-49
Data area in VQB

clearing 2-14
example 2-10

data format 5-97
Database Toolbox 2-16
preferences for retrieval 5-97
preferences in VQB 2-15

data source
defining

JDBC 5-15
local ODBC 1-12

definition 1-12
for connection 5-20
JDBC

defining 1-19
removing 1-27
updating 1-27

ODBC connection 5-48
ODBC, on system 5-55
selecting for VQB 2-8
setting up 1-12

data types 5-2
BINARY, retrieving with functions 3-24
BINARY, retrieving with VQB 2-55
OTHER, retrieving with functions 3-24

OTHER, retrieving with VQB 2-55
supported 1-10

database
connecting to 5-20
connecting to, example 3-4
example 3-4
JDBC connection 5-48
metadata object

creating 5-25
functions 3-31
properties 5-47
properties supported 5-110

name 5-20
supported 1-7
URL 5-20

Database Toolbox
about 1-2
features 1-3
relationship of functions to VQB 1-5
starting 1-29

DatabaseObject 5-49
dbdemos 3-1
demos 3-1

dbinfodemo 3-9
dbinsertdemo 3-12
dbupdatedemo 3-17
Visual Query Builder 2-7

displaying
chart 2-25
query results

as chart 2-23
as report 2-26
in Report Generator 2-28
relationally 2-19

Distinct option in VQB 2-32
dmd 5-25

example 3-26
dotted line in display of results 2-20
driver 5-26

example 3-33

Index-3

Index

object in get function 5-48
driver object

functions 4-6
functions, example 3-33
properties 3-33

drivermanager 5-27
drivermanager object

example 3-33
properties 5-90
properties, via get 5-47

drivers
JDBC 1-8 5-20
JDBC compliance 5-64
loading 5-85
ODBC 1-8
properties 5-47
properties, drivermanager 5-27
supported 1-8
unloading 5-116
validity 5-63
versions 3-34

Drivers 5-51

E
editing clauses in VQB 2-36
empty field 3-25
error

messages
cursor object 5-49
database connection object 5-48
modifying database 5-28
syntax problem in VQB 2-11

error handling, preferences 2-15
error notification, preferences 5-97
examples

using functions 3-1
using VQB 2-3

exec 5-28
example 3-5

executing queries 5-28
example 3-5
VQB 2-10

exportedkeys 5-33
exporting data

cell arrays 3-13
inserting 5-36 5-61

example 3-12
multiple records 3-22

replacing 5-117
replacing, example 3-17
using VQB 2-57

F
fastinsert 5-36

example 3-15
feature 1-29
fetch 5-41

example 3-6
Fetch 5-49
fieldName 5-2
fields

names 5-12
selecting for VQB 2-9
size (width) 5-2

example 3-10
width 5-122

foreign key information
crossreference 5-17
exportedkeys 5-33
importedkeys 5-56

format for data retrieved, preferences 5-97
freeing up resources 5-6
functions

equivalent to VQB queries 2-66

G
get 3-34 5-47

Index-4

Index

AutoCommit status 3-14
properties 3-33

getdatasources 5-55
grouping statements 2-37

removing 2-42

H
Handle 5-48
help

menus and buttons 1-29
Visual Query Builder 2-7

HTML report of query results 2-26
Report Generator 2-28

I
images

importing 3-24
VQB 2-55

importedkeys 5-56
importing data

data types
BINARY and OTHER using functions 3-24
BINARY and OTHER using VQB 2-55

empty field 3-25
using functions 5-41

example 3-3
using VQB 2-3 2-8

index for resultset column 5-72
indexinfo 5-59
insert 5-61
inserting data into database 3-22
Instance 5-48
isconnection 5-62
isdriver 3-34 5-63
isjdbc 5-64
isNullable 5-52
isnullcolumn 5-65
isreadonly 5-67

isReadOnly 5-52
isurl 5-68

J
Java Database Connectivity., see JDBC
JDBC

compliance 5-64
connection object 5-48
data source

defining for VQB 1-22
driver instance 5-48
driver name 5-20
drivers

names 5-20
supported 1-8
validity 5-63

MAT-file location preference 5-97
SQL conversion to native grammar 5-109
URL 5-20

via get 5-48
JDBC/ODBC bridge 1-8
join operation in VQB 2-50

L
legend

in chart 2-24
labels in chart 2-24

loading saved queries 2-13
logical data type

inserting 5-40
retrieving 5-46
VQB 2-62

logintimeout 5-69
example 3-3
Macintosh platform 5-69

LoginTimeout
Database connection object 5-48
Drivermanager object 5-51

Index-5

Index

example 3-34
LogStream 5-51

M
M-files 3-1

generated from VQB 2-66
MajorVersion 5-50
MATLAB

workspace variables in VQB 2-10
matlabroot 1-13
memory problems

RowLimit solution 5-41
Message

attr 5-2
cursor object 5-49
database connection object 5-48

metadata object
database 5-25

example 3-26
database functions 3-31
resultset 5-89
resultset functions 3-32

methods 3-36
MinorVersion 5-50
multiple entries, selecting 2-9

N
namecolumn 5-72
nested SQL 2-45
NULL values

detecting in imported record 5-65
function for handling 2-18
preferences for reading and writing 2-15
reading from database 3-19
representation in results 2-16
setdbprefs 5-97
writing to database 2-15

nullable 5-2

num2cell 3-45
numeric data format 5-97

VQB 2-15

O
objects 3-36

creating 3-36
properties, getting 5-47

ObjectType 5-48
ODBC

data source, setting up 1-12
data sources on system 5-55
drivers 1-8

online help
Visual Query Builder 2-7

Open Database Connectivity., see ODBC
drivers

Operator in VQB 2-36
Order By Clauses dialog box 2-43
Order by option in VQB 2-42
OTHER data type 1-10

retrieving with functions 3-24
retrieving with VQB 2-55

overloaded functions 3-37

P
parentheses, adding to statements 2-37
password 5-20

example 3-4
ping 5-73

AutoCommit 3-14
example 3-5

platforms 1-6
precision 5-2
preferences

for Visual Query Builder 2-15
primary key information 5-17
primarykeys 5-75

Index-6

Index

printing
chart 2-25
display 2-22
report 2-27

privileges
columns 5-10
tables 5-112

procedurecolumns 5-77
procedures 5-80
properties

database metadata object 5-110
example 3-26

driver 3-33
getting 5-47
setting 5-90

Q
qry file extension

example 2-13
queries

accessing subqueries in multiple
tables 2-45

accessing values in multiple tables 2-50
creating with VQB 2-3 2-8
displaying results

as chart 2-23
as report 2-26
in Report Generator 2-28
relationally 2-19

executing 2-10
executing for export 2-59
exporting with VQB 2-57
loading saved queries 2-13
ordering results 2-42
refining 2-34
results 5-49

example 3-37
VQB 2-10

running via exec 5-28

saving 2-13
select statement 3-5

querybuilder 5-83
querytimeout 5-84
quitting

Visual Query Builder 2-7
quotation marks

in table and column names 1-7

R
readOnly 5-2
ReadOnly 5-48
refining queries 2-34
register 5-85
Relation in VQB 2-34
relational display of query results 2-19
replacing data 3-17

update function 5-117
Report Generator display of query results 2-28
reporting query results

Report Generator 2-28
table 2-26

requirements, system 1-6
reserved words 1-8
results

from query 2-10
viewing 2-11

resultset 5-86
clearing warnings for 5-5
closing 5-6
column name and index 5-72
metadata object 3-32

creating 5-89
properties 5-47

object, functions 4-6
properties 5-47

ResultSet 5-49
retrieving

data from cell arrays 3-42

Index-7

Index

data from database 2-8
rollback 5-87
RowLimit

fetch 5-41
get 5-49
set 5-92

rows 5-88
example 3-9
uniquely identifying 5-4

rsmd 5-89
running queries 2-10

S
saving queries 2-13
scale 5-2
select statement 3-5
selecting data from database 5-30
selecting multiple entries in VQB 2-9
set 5-90

example 3-34
setdbprefs 5-97

example 3-19
VQB 2-18

size 3-21
size of field 3-10
Sort key number in VQB 2-43
Sort order in VQB 2-43
spaces

in table and column names 1-7
speed

database access 1-9
inserting data 5-36

SQL
commands 1-9
conversion to native grammar 5-109
join in VQB 2-50

statement
executing 5-28
in exec 5-49
in exec, example 3-5
in VQB 2-36

time allowed for query 5-84
where clause 5-117

example 3-18
where clause in exec 3-18

sql2native 5-109
SQLQuery 5-49
starting

Database Toolbox 1-29
Visual Query Builder 2-4

Statement 5-49
status of connection 5-73

example 3-5
stored procedures

in catalog or schema 5-80
information 5-77
running 5-32

string and numeric data format 5-97
strings

within strings 3-18
structure data format 5-97

VQB 2-15
subqueries

in VQB 2-45
Subquery dialog box 2-46
supports 5-110

example 3-29
system requirements 1-6

T
TableName 5-52
tableprivileges 5-112
tables 5-114

example 3-31
index information 5-59

Index-8

Index

names 5-114
privileges 5-112
selecting for VQB 2-9
selecting multiple for VQB 2-51

time
allowed for connection 5-69
allowed for SQL query 5-84

TimeOut 5-48
TransactionIsolation 5-48
Type 5-49
typeName 5-2
typeValue 5-2

U
undo 3-14
ungrouping statements 2-42
unique occurrences of data 2-32
unregister 5-116
update 5-117

example 3-18
URL 5-48

JDBC database connection 5-20
validity 5-68

username 5-20
example 3-4

UserName 5-48

V
versioncolumns 5-120

viewing query results 3-39
Visual Query Builder

demo 2-7
equivalent Database Toolbox

functions 2-66
examples 2-3
help 2-7
JDBC data source, defining 1-22
ODBC data source, defining 1-15
overview 2-3
quitting 2-7
relationship to Database Toolbox

functions 1-5
starting 1-29 2-4 5-83
steps to use 2-4

VQB., see Visual Query Builder

W
Warnings 5-48
warnings, clearing 5-5
where clause 5-117

example 3-18
Where Clauses dialog box 2-34
Where option in VQB 2-34
width 5-122

example 3-10
workspace variables in VQB 2-10

clearing from Data area 2-14
writable 5-48

Index-9

	toc
	Getting Started
	What Is the Database Toolbox?
	How the Database Toolbox Works with Databases
	Features of the Database Toolbox
	Expected Background for Users
	MATLAB
	Database Connection
	SQL

	Using the Visual Query Builder Versus Functions
	When to Use the Visual Query Builder
	When to Use Database Toolbox Functions

	System Requirements
	Platforms
	MATLAB and Related Products
	Databases
	Data Retrieval Restrictions

	Drivers
	About Drivers for the Database Toolbox

	Structured Query Language (SQL)
	Data Types
	BINARY and OTHER Java SQL Data Types

	Setting Up a Data Source
	Setting Up a Data Source for ODBC Drivers
	Prepare to Use Examples
	Define an ODBC Data Source

	Setting Up a Data Source for JDBC Drivers
	Find Your JDBC Drivers Filename
	Include the Reference in the MATLAB Java Classpath
	Define a JDBC Data Source in the Visual Query Builder

	Starting the Database Toolbox
	Online Help

	Visual Query Builder
	Getting Started with the Visual Query Builder GUI
	Before You Start
	Starting the Visual Query Builder
	Steps for Retrieving Data with the VQB
	Steps for Exporting Data with the VQB
	Help and Demos for the Visual Query Builder
	Getting Help in the VQB
	Running a Visual Query Builder Demo

	Quitting the Visual Query Builder

	Creating and Running a Query to Import Data
	Before You Start
	Building and Executing a Query

	Saving, Editing, and Clearing Variables for Queries
	Saving a Query
	Using a Saved Query
	See Also

	Editing a Query
	Clearing Variables in the Data Area

	Specifying Preferences for NULLS, Data Format, and Error Handlin
	Saving Preferences

	Viewing Query Results
	Relational Display of Data
	Chart Display of Results
	Report Display of Results in a Table
	Customized Display of Results in the Report Generator

	Fine-Tuning Queries Using Advanced Query Options
	Retrieving Unique Occurrences
	Retrieving Information That Meets Specified Criteria
	Evaluating Multiple Constraints
	Removing Grouping

	Presenting Results in Specified Order
	Creating Subqueries for Values from Multiple Tables
	Creating Queries for Results from Multiple Tables
	Other Features in Advanced Query Options

	Retrieving BINARY and OTHER Java Data
	Retrieving Images in Data

	Exporting Data Using the VQB
	Limitations
	Before You Start
	To Start

	BOOLEAN (MATLAB logical) Data
	Importing BOOLEAN Data
	Exporting BOOLEAN Data

	Generating M-Files from VQB Queries

	Using Functions in the Database Toolbox
	Importing Data into MATLAB from a Database
	Viewing Information About the Imported Data
	Exporting Data from MATLAB to a New Record in a Database
	Replacing Existing Data in a Database from MATLAB
	Exporting Multiple New Records from MATLAB
	Retrieving BINARY or OTHER Java SQL Data Types
	Accessing Metadata
	Resultset Metadata Object

	Performing Driver Functions
	About Objects and Methods for the Database Toolbox
	Working with Cell Arrays in MATLAB
	Viewing Cell Array Data Returned from a Query
	Viewing Query Results
	Viewing Results with Multiple Columns
	Expanding Results

	Viewing Elements of Cell Array Data
	Viewing a Single Element as a Numeric Value
	Viewing an Entire Column or Row as a Numeric Vector

	Performing Functions on Cell Array Data
	Creating Cell Arrays for Exporting Data from MATLAB
	Enclosing Data in Curly Braces
	Assigning Cell Array Elements
	Converting a Numeric Matrix to a Cell Array

	Functions — By Category
	General
	Database Connection
	SQL Cursor
	Importing Data into MATLAB from a Database
	Database Metadata Object
	Exporting Data from MATLAB to a Database
	Driver Object
	Drivermanager Object
	Resultset Object
	Resultset Metadata Object
	Visual Query Builder

	Functions — Alphabetical List
	Examples
	Example 2 — Import Specified Number of Rows of Data
	Example 3 — Repeat Importing Rows to Retrieve All Data
	Example 4 — Import Numeric Data
	Example 5 — Import BOOLEAN Data
	Driver Object
	Database Metadata Object
	Drivermanager Object
	Resultset Object
	Resultset Metadata Object
	Example 1 — Get Connection Property, Data Source Name
	Example 2 — Get Connection Property, AutoCommit Flag Status
	Example 3 — Display Data in Cursor
	Example 4 — Get Database Metadata Object Properties
	Example 3 — Set AutoCommit Flag to Off for Connection and Commit

	Examples
	Setting Up a Data Source
	Visual Query Builder GUI: Importing Data
	Visual Query Builder GUI: Displaying Results
	Visual Query Builder GUI: Exporting Data
	Using Database Toolbox Functions

	Index

